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– 1 –Tracks, Lie’s, and Exceptional Magic

Predrag Cvitanović

School of Physics, Georgia Tech

Atlanta GA, USA

Q : What is the group theoretic weight for QCD diagram

= ?

A :

1. new notation: invariant tensors ↔ “Feynman” diagrams

2. new computational method: diagrammatic, start → finish

3. new relations: “negative dimensions” SO(n) ↔ Sp(−n), E7 ↔ SO(4), etc.

4. new classification: primitive invariants → all semi-simple Lie algebras
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– 2 –Magic Triangle
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– 3 –Part I: Lie groups, a review

1. linear transformations

2. invariance groups

3. birtrack notation

4. primitive invariants

5. reduction of multi-particle states

6. Lie algebras
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– 4 –Linear transformations

defining rep of group G:

G : V → V , [n × n] matrices Ga
b ∈ G

defining multiplet: particle wave function q ∈ V transforms as V → V

q′a = Ga
bqb , a, b = 1, 2, . . . , n

conjugate multiplet: “antiparticle” wave function q̄ ∈ V̄ transforms as V̄ → V̄

q′a = Ga
bq

b

tensors: multi-particle states transform as V p⊗V̄ q → V p⊗V̄ q

p′aq′br
′c = G f

a G e
b Gc

dpfqer
d

Note: repeated indices are always summed over

Ga
bxb ≡

n
∑

b=1

Ga
bxb ,

unless explicitly stated otherwise.
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– 5 –Invariants

A multinomial

H(q, r, . . . , s) = h ...c
ab... qarb . . . sc

is an invariant of the group G if for all G ∈ G and any set of vectors q, r, s, . . . it satisfies

invariance condition: H(Gq, Gr, . . . Gs) = H(q, r, . . . , s) .
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– 6 –Invariance group

Definition. An invariance group G is the set of all linear transformations which leave invariant

p1(x, ȳ)=p1(Gx, ȳG†) , p2(x, y, z, . . .) = p2(Gx, Gy, Gz . . .) , . . . .

a finite list of primitive invariants:

P = {p1, p2, . . . , pk}

No other primitive invariants exist.

(a more precise statement in what follows)
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– 7 –Notation

tensorial index notation:

p′aq′br
′c = Gab

c, d
efpfqer

d , Gab
c, d

ef = G f
a G e

b Gc
d

collective indices notation:

q′α = Gα
βqβ α =

{

c

ab

}

, β =

{

ef

d

}

diagrammatic notation:
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– 8 –Birdtracks

agglomerations of invariant tensors → birdtracks (group-theoretical “Feynman” diagrams)

Invariant tensors → vertices (blobs with external legs)

Xα = Xabc
de = X

d
e
a
b
c

, hcd
ab =

b

da

c

Contractions → propagators (Kronecker deltas)

δa
b = b a
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– 9 –Birdtracks rule

Rules:

(1) Direct arrows from upper indices “downward” toward the lower indices:

hcd
ab =

b

da

c

(2) Indicate which in (out) arrow corresponds to the first upper (lower) index:

Re
abcd =

a b c d e

index is the first index
Here the leftmost

R .

(3) Read in the counterclockwise order around the vertex:

xbce
ad =

b

the indices
Order of reading

a

X

e

d

c

.
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– 10 –Composed invariants, tree invariants

Definition. A composed invariant tensor is a product and/or contraction of invariant tensors.

Examples:

δijεklm =

k mj

i

l

, εijmδmnεnkl =

n

j ki l

m

.

Corresponding invariants:

product L(x, y)V (z, r, s) ; index contraction V (x, y,
d

dz
) V (z, r, s) .

Definition. A tree invariant involves no loops of index contractions.

Example: The above tensors are tree invariants. The tensor

hijkl = εimsεjnmεkrnε`sr =

s
i

j

l

k

m

n
r

,

with interal loop indices m, n, r, s summed over, is not a tree invariant.
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– 11 –Primitive invariants

Definition. An invariant tensor is primitive if it cannot be expressed as a combination of tree invariants composed

of other primitive invariant tensors.

Example:

Kronecker delta and Levi-Civita tensor are the primitive invariant tensors of our 3-dimensional space.

P =

{

ji ,
kji

}

.

4-vertex loop is not a primitive, because the Levi-Civita relation

=
1

2

{

−
}

reduces it to a sum of tree contractions:

i l

j k

=
j

i

k

l
+

j

i

k

l
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– 12 –Primitiveness assumption

Let T = {t0, t1 . . . tr} = a maximal set of r linearly independent tree invariants tα ∈ V p ⊗ V̄ q.

Primitiveness assumption. Any invariant tensor h ∈ V p ⊗ V̄ q can be expressed as a linear sum over the basis

set T .

h =
∑

T

hαtα .

Example:

Given primitives P = {δij , fijk}, any invariant tensor h ∈ V p (here denoted by a blob) is expressible as

=P , = V

=A + B + C + D + E

� �� �
� �� �

+ F

=G + H + . . . , · · ·
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– 13 –Hermitian conjugation

Hermitian conjugation

(a) exchanges the upper and the lower indices, ie. reverses arrows

(b) it reverses the order of the indices, ie. transposes a diagram into its mirror image.

Example: A tensor and its conjugate:

Xα = Xabc
de = X

d
e
a
b
c

, Xα = Xed
cba =

d
e
a
b
c

X ,

Motivation: contraction X†X = |X|2 can be drawn in a plane.

Example: contraction of tensors X† and Y :

XαYα = Xbp...b1
aq...a2a1

Y
a1a2...aq

b1...bp

= YX .

Real defining space, V = V̄ : no distinction between up and down indices, lines carry no arrows

δj
i = δij = ji
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– 14 –Hermitian matrices

Invariant tensor M ∈ V p+q⊗V̄ p+q is a hermitian matrix

M : V p⊗V̄ q → V p⊗V̄ q

if it is invariant under transposition and arrow reversal.

Example:

Given the 3 primitive invariant tensors:

δb
a = a b , dabc =

a

b c

, dabc = (dabc)
∗ =

a

b c

.

(dabc fully symmetric) can construct 3 hermitian matrices M : V ⊗V̄ → V ⊗V̄

δa
b δc

d =
a b

d c
, δa

dδc
b =

c

a b

d
, dacedebd =

� � �
� � �

� � �

� � �
� � �

� � �

e
d

a

� � �
� � �

� �
� �

b   
   

! !
! !

c

" " " "

" " " "

# # #
# # #

$ $ $
$ $ $

% % %
% % % .

Self-dual under transposition and arrow reversal.
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– 15 –Projection operators

Hermitian matrix M is diagonalizable by a unitary transformation C

CMC† =















λ1 0 0 . . .

0 λ1 0

0 0 λ1

λ2

...
. . .















.

Removing a factor (M − λj1) from its characteristic equation
∏

(M − λi1) = 0 yields a

projection operator: Pi =
∏

j 6=i

M − λj1

λi − λj

= C†



































0

. . . 0

0
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.

.

.
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0



































C

for each distinct eigenvalue of M .
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– 16 –U(n) invariant matrices

Example

U(n) is the invariance group of the norm of a complex vector |x|2 = δa
b xbxa.

only one primitive invariant tensor: δa
b = a b

Can construct 2 invariant hermitian matrices M ∈ V 2⊗V̄ 2:

identity : 1a c
d,b = δa

b δc
d =

a b

d c
, trace : T a c

d,b = δa
dδc

b =
c

a b

d
.

The characteristic equation for T in tensor, birdtrack, matrix notation:

T a f
d,e T e c

f,b = δa
dδf

e δe
fδc

b = n T a c
d,b ,

& & &' ' '( ( () ) ) * * *+ + +, , ,- - - = n . . ./ / /0 0 01 1 1

T 2 = nT .

δe
e = n = the dimension of the defining vector space V .



www.nbi.dk/GroupTheory

– 17 –U(n) reduction

The roots of the characteristic equation T 2 = nT are λ1 = 0, λ2 = n.

The corresponding projection operators decompose U(n) → SU(n) ⊕ U(1):

SU(n) adjoint rep: P1 =T−n1

0−n
= 1 − 1

n
T

2 2 23 3 34 4 4
4 4 4

5 5 5
5 5 5

= − 1
n

6 6 67 7 78 8 89 9 9

U(n) singlet: P2 =T−0·1
n−1

= 1
n
T

= 1
n

: : :; ; ;< < <= = = .
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– 18 –Infinitesimal transformations

Infinitesimal unitary transformation, its action on the conjugate space:

Gb
a = δb

a + iεj(Tj)
b
a , (G†)a

b = δa
b − iεj(Tj)

a
b , |Db

a| ¿ 1 .

is parametrized by

N = dimension of the group (Lie algebra, adjoint rep) ≤ n2

real parameters εj . The adjoint representation matrices {T1, T2, · · · , TN} are generators of infinitesimal

transformations, drawn as

1√
a
(Ti)

a
b =

b
i

a
a, b = 1, 2, . . . , n , i = 1, 2, . . . , N ,

where a is an (arbitrary) overall normalization.

The adjoint representation Kronecker delta will be drawn as a thin straight line

δij = i j , i, j = 1, 2, . . . , N .
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– 19 –Adjoint representation

Consider the decomposition of V ⊗V̄ into (ir)reducible subspaces; the adjoint subspace is always contained

in V ⊗V̄ :

1=
1

n
T + PA +

∑

λ6=A

Pλ

δa
dδc

b =
1

n
δa
b δc

d + (PA)a
b , c

d +
∑

λ6=A

(Pλ)a
b , c

d

=
1

n
+ +

∑

λ

λ
.

where the adjoint rep projection operators is drawn in terms of the generators:

(PA)a
b , c

d =
1

a
(Ti)

a
b (Ti)

c
d =

1

a
.

The arbitrary normalization a cancels out in the projection operator orthogonality condition

tr (TiTj) = a δij

= .
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– 20 –Invariance, infinitesimally

Invariant tensor h is unchanged under an infinitesimal transformation G : V p⊗V̄ q → V p⊗V̄ q :

Gα
βhβ = (δα

β + εj(Tj)α
β)hβ + O(ε2) = hα ,

so generators of infinitesimal transformations annihilate invariant tensors

Tih = 0 .

The tensorial index notation is cumbersome:

p′aq′br
′c = G f

a G e
b Gc

dpfqer
d

G f
a G e

b Gc
d = δf

aδe
bδ

c
d + εj((Tj)

f
aδe

bδ
c
d + δf

a (Tj)
e
bδ

c
d − δf

aδe
b(Tj)

c
d) + O(ε2) ,

but diagramatically the group acts as a derivative (ingoing lines carry minus signs):

Invariance condition:

0 = + − + − .
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– 21 –Lie algebra

As all other invariant tensors, the generators Ti must satisfy the invariance conditions:

0 = − + − .

Redraw, replace the adjoint rep generators by the structure constants: we have derived the Lie algebra

i j

− =

TiTj − TjTi = iCijkTk .
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– 22 –Structure constants

For a generator of an infinitesimal transformation acting on the adjoint rep, A → A , it is convenient to

replace the arrow by a full dot

> >
> >

? ?
? ? = =

@ @ @
@ @ @

A A A
A A A

B B B
B B B

C C
C C

D D D D

D D D D

E E E
E E E

−

F F F F

F F F F

F F F F

G G G
G G G

H H
H H

I I
I I

J J J J

J J J J

K K K
K K K

(Ti)jk ≡ −iCijk =−tr [Ti, Tj ]Tk ,

where dot stands for a fully antisymmetric structure constant iCijk. Keep track of the overall signs by always

reading indices counterclockwise around a vertex

−iCijk =

kj

i

, = − L LM MN
N

N
N

N
N

.
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– 23 –Jacobi relation

The invariance condition for structure constants Cijk is likewise

0 = + + .

Rewdraw this with the dot-vertex to obtain the Jacobi relation

j

i l

k

− =

CijmCmkl − CljmCmki = CimlCjkm .
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– 24 –Birdtracks at work

Remember

= ? ,

the one graph that launched this whole odyssey?

Example evaluation: SU(n)

We saw that the adjoint rep projection operators for the invariance group of the norm of a complex vector

|x|2 = δa
b xbxa is

SU(n): O O OP P PQ Q Q
Q Q Q

R R R = − 1

n

S S S ST T TU U UV V V .

Eliminate Cijk 3-vertices using

=

W W W
W W W

X X X
X X X

Y Y Y
Y Y Y

Z Z
Z Z

[ [ [ [

[ [ [ [

\ \ \
\ \ \

−

] ] ] ]

] ] ] ]

] ] ] ]

^ ^ ^
^ ^ ^

^ ^ ^
_ _

_ _
` `

` `
a a a a

a a a a

b b b
b b b

.
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– 25 –Heavy birdtracking, SU(n)

Evaluation is performed by a recursives substitution, the algorithm easily automated

=

c c c
c c c

c c c
d d

d d
d d

−

e e
e e

e e
f f

f f
f f

=

g g
g g

g g
h h

h h

−

i i i
i i i

i i i
j j

j j

− . . . =

k kl l

m m
m m

n n
n n

−

o op p

q q
q q

r r
r r

− . . .

=

s s
s s

t t
t t

−

u u
u u

v v
v v

−

w w
w w

x x
x x

+

y y
y y

z z
z z

− . . .

= n2−1
n

{ {
{ {

| |
| |

−

} }
} }

~ ~
~ ~

� � � �

� � � �

� � �
� � � + 2

n

� � �
� � �

� � �
� �

� �
� �

+ � � �
� � �

� � �
� �

� �
� �

� � �
� � �

� � �
� �

� �
� �

− 1
n

� � �
� � �

� �
� �

+ . . .

arriving at

= n

{

� �
� �

� �
� �

� �

+

� �
� �

� �
� � }

+ 2

{

+ +

}

.
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– 26 –SU(n) 4-loop graph evaluated

Collecting everything together, we finally obtain

SU(n) : = 2n2(n2 + 12) .

Any SU(n) graph, no matter how complicated, is eventually reduced to a polynomial in traces of δa
a = n, the

dimension of the defining rep.
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– 27 –A brief history of birdtracks

semi-simple Lie groups are here presented in an unconventional way, as “birdtracks”:

Wigner lineage:

1930: Wigner: all physics (atomic, nuclear, particle physics) = 3n-j coefficients.

1956: I.B. Levinson: Wigner theory in graphical form (see A. P. Yutsis, I. Levinson and V. Vanagas, and

G. E. Stedman).

Feynman lineage:

1949: R.P. Feynman: beautiful sketches of the very first “Feynman diagrams”

1971: R. Penrose’s drawings of symmetrizers and antisymmetrizers.

1974: G. ’t Hooft double-line notation for U(n) gluons.

1976: P. Cvitanović1,2birdtracks for SU(n), SO(n) and Sp(n); the exceptional Lie groups other than E8.

1P. Cvitanović, Phys. Rev. D14, 1536 (1976)
2P. Cvitanović, Oxford preprint 40/77 (June 1977); www.nbi.dk/ChaosBook
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– 28 –Feynman diagrams? Why birdtracks?

Feynman diagrams are a memonic device, an aid in writing down an integral.

“Birdtracks” are a calculational method: here all calculations are carried out in terms of birtracks, from start

to finish.
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– 29 –Part II: Exceptional magic

1. Lie groups as invariance groups

2. primitive invariants classification

3. SU(n) as invariance group

4. E6 family

5. G2 family

6. E8 family

7. Exceptional magic

8. Why did you do this?



www.nbi.dk/GroupTheory

– 30 –Lie groups as invariance groups

i) define an invariance group by specifying a list of primitive invariants

ii) primitiveness and invariance conditions → algebraic relations between primitive invariants

iii) construct invariant matrices acting on tensor product spaces,

iv) construct projection operators for reduced rep from characteristic equations for invariant matrices.

When the next invariant is added, the group of invariance transformations of the previous invariants splits

into two subsets; those transformations which preserve the new invariant, and those which do not.

Such decompositions yield Diophantine conditions on rep dimensions, so constraining that they limit the

possibilities to a few which can be easily identified.
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– 31 –Classification by primitive invariants

The logic of the construction schematically indicated by the chains of subgroups

qq

E +...8

G +...2 F +...4 E +...6

SU(  )n

SO(  )n Sp(  )n

E +...7

Primitive invariants

qqq

qqqq

higher order

qq

Invariance group

Example: E7 primitives are:

a sesquilinear invariant qq̄,

a skew symmetric qp invariant, and

a symmetric qqqq .
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– 32 –E6 family of invariance groups

Example

What invariance group preserves norms of complex vectors, as well as a symmetric cubic invariant

D(p, q, r) = D(q, p, r) = D(p, r, q) = dabcpaqbrc ?

i) primitive invariant tensors:

δb
a = a b , dabc =

a

b c

, dabc = (dabc)
∗ =

a

b c

.

ii) primitiveness: daefdefb proportional to δa
b , the only primitive 2-index tensor. Fix the dabc’s normalization:

= .

iii) all invariant hermitian matrices in V ⊗V̄ → V ⊗V̄

δa
b δc

d =
a b

d c
, δa

dδc
b =

c

a b

d
, dacedebd =

� � �
� � �

� � �

� � �
� � �

� � �

e
d

a

� � �
� � �

� �
� �

b� � �
� � �

� �
� �

c

� � � �

� � � �

� � �
� � �

� � �
� � �

� � �
� � � .

iv) invariance condition:

+ + = 0 .
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– 33 –E6 family: invariance condition

Contract the invariance condition with dabc : + 2 = 0 .

Contract with (Ti)
b
a to get an invariance condition on the adjoint projection operator PA:

+ 2 = 0 .

Adjoint projection operator in the invariant tensor basis (A, B, C to be fixed):

(Ti)
a
b (Ti)

d
c =A(δa

c δd
b + Bδa

b δd
c + Cdadedbce)

� � �� � �� � �
� � �

� � �
� � �

=A

{

+ B � � �� � �� � �� � � + C � � �
� � �

     
     ¡ ¡ ¡

¡ ¡ ¡
¡ ¡ ¡

¢ ¢
¢ ¢

£ £ £
£ £ £

¤ ¤
¤ ¤

¥ ¥ ¥
¥ ¥ ¥

¦ ¦ ¦
¦ ¦ ¦

§ § §¨ ¨ ¨

}

.

Substituting PA

0=n + B + C + 2

{

+ B + C

}

0=B + C +
n + 2

3
.
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– 34 –E6 family: adjoint rep

v) projection operators are orthonormal: PA is orthogonal to the singlet projection operator P1, 0 = PAP1.

This yields the second relation on the coefficients:

0 =
1

n

© © © ©ª ª ª « « «¬ ¬ ¬    ® ® ®¯ ¯ ¯° ° ° = 1 + nB + C .

Normalization fixed by PAPA = PA:

± ± ± ±² ² ² =

³ ³
³ ³

´ ´
´ ´

µ µ µ µ¶ ¶ ¶ = A

{

1 + 0 − C

2

}

· · · ·¸̧ ¸ .

The 3 relations yield the adjoint projection operator

¹ ¹ ¹
¹ ¹ ¹

º º º » » »
» » »

¼ ¼ ¼ =
2

9 + n

{

3 + ½ ½ ½¾ ¾ ¾¿ ¿ ¿À À À − (3 + n)

Á Á Á
Á Á Á

Â Â Â
Â Â ÂÃ Ã Ã

Ã Ã Ã
Ã Ã Ã

Ä Ä
Ä Ä

Å Å Å
Å Å Å

Æ Æ
Æ Æ

Ç Ç Ç
Ç Ç Ç

È È È
È È È

É É É É

É É É É

É É É É
Ê Ê Ê

Ê Ê Ê

}

.

The dimension of the adjoint rep:

N = δii = =
Ë Ë Ë Ë

Ë Ë Ë Ë

Ì Ì Ì
Ì Ì Ì

Í Í Í ÍÎ Î Î

= nA(n + B + C) =
4n(n − 1)

n + 9
.

This Diophantine condition is satisfied by a small family of invariance groups, the E6 row in the Magic

Triangle, with E6 corresponding to n = 27 and N = 78.
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– 35 –G2 and E8 families of invariance groups

+ B= A

,

(3)SO

E family8

(3)SU

n=7 n=6

= 0

(n)(n),(n),

=

6 =

SU SO Sp

2G

primitives:

quartic primitive no quartic primitive

any adjoint representation

Jacobi

no relations

two relations one relation

alternativity

assume:
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– 36 –G2 family of invariance groups

Primitive invariants:

(i) δa
b → invariance group is a subgroup of SU(n).

(ii) δab → invariance group is a subgroup of SO(n).

(iii) a cubic antisymmetric invariant

fabc = = − = −facb .

Primitiveness assumption: all invariants are tree contractions of δab , fabc.

Example: the primitiveness assumption implies that

fabcfcbd =α δad

=α .

α = 1 (normalization of f ’s) in what follows.
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– 37 –G2 alternativity relation

Result: Invariance condition is nontrivially satisfied only in 3 and 7 dim - a proof of

Hurwitz’s theorem: n + 1 dimensional normed algebras over reals exist only for

n = 0, 1, 3, 7 (real, complex, quaternion, octonion).

The full solution for G2 is given by the reduction identity:

=
α

3



















− 2 +



















which recursively reduces all contractions of products of δ-functions and pairwise contractions fabcfcde, and

thus completely solves the problem of evaluating any diagram of G2.
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– 38 –E8 family of invariance groups

primitives: symmetric quadratic, antisymmetric cubic primitive invariants:

i j , = − Ï ÏÐ Ð ,

satisfying the Jacobi relation:

− = .

The task:

(i) enumerate all Lie groups that leave the primitives invariant.

The key idea here is the primitiveness assumption: any invariant tensor a linear sum over the tree

invariants constructed from the quadratic and the cubic invariants, i.e. no quartic primitive invariant

exists in the adjoint rep

(ii) demonstrate that we can reduce all loops

, , , · · · . (0.1)
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– 39 –E8 family: Two-index tensors

Remember

= ? ,

the one graph that launched this whole odyssey?

A loop with four structure constants is reduced by reducing the A⊗A → A⊗A space. By Jacobi relation

there are only two linearly independent tree invariants in A4 constructed from the cubic invariant:

and

induces a decomposition of ∧2A antisymmetric tensors:

= +

{

−
}

+
1

N
+

{

− 1

N

}

1 = P + P + P• + Ps .

matrix in A⊗A → A⊗A can decompose only the symmetric subspace Sym2A.
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– 40 –E8 family: primitivness assumption

The assumption that there exists no primitive quartic invariant is the defining

relation for the E8 family.

Let

Qij,kl =
k

i

j

l
.

By the primitiveness assumption, the 4-index loop invariant Q2 is expressible in terms of Qij,k`, CijmCmk`

and δij , hence on the traceless symmetric subspace

0=

{

+ p + q

}{

− 1

N

}

0=(Q2 + pQ + q1)Ps .

Coefficients p, q follow from symmetry and the Jacobi relation, yielding the characteristic equation for Q
(

Q2 − 1

6
Q − 5

3(N + 2)
1

)

Ps = (Q − λ1)(Q − λ∗1)Ps = 0 .

Rewrite the condition on an eigenvalue of Q

λ2 − 1

6
λ − 5

3(N + 2)
= 0 ,

as fromula for N

N + 2 =
5

3λ(λ − 1/6)
= 60

(

6 − λ−1

6
− 2 +

6

6 − λ−1

)

.



As we shall seek for values of λ such that the adjoint rep dimension N is an integer, it is natural to

reparametrize the two eigenvalues as

λ =
1

6

1

1 − m/6
= − 1

m − 6
, λ∗ =

1

6

1

1 − 6/m
=

1

6

m

m − 6
.

In terms of the parameter m, the dimension of the adjoint representation is given by

N = −122 + 10m + 360/m .

As N is an integer, allowed m are rationals m = P/Q, P and Q relative primes. Need to check only the 27

rationals m > 6.
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– 41 –E8 family: further Diphantine conditions

The associated projection operators:

P =

Ñ Ñ Ñ
Ñ Ñ Ñ

Ò Ò Ò
Ò Ò Ò

=
1

λ − λ∗

{

− λ∗ − 1 − λ∗

N

}

P = =
1

λ∗ − λ

{

− λ − 1 − λ

N

}

.

Typical dimensions:

d = trP =
(N + 2)(1/λ + N − 1)

2(1 − λ∗/λ)
=

5(m − 6)2(5m − 36)(2m − 9)

m(m + 6)
,

d =
270(m − 6)2(m − 5)(m − 8)

m2(m + 6)
.

From the decomposition of the Sym3A:

d =
5(m − 5)(m − 8)(m − 6)2(2 m − 15)(5 m − 36)

m3(3 + m)(6 + m)
(36 − m)

To summarize: A⊗A decomposes into 5 irreducible reps

1 = P + P + P• + P + P .



The decomposition is parametrized by a rational m and is possible only if dimensions N and d are integers.

our homework problem is done: a reduction of the adjoint rep 4-vertex box for all exceptional Lie groups.

The main result of all this heavy birdtracking: N > 248 is excluded by the positivity of d , N = 248 is

special, as P = 0 implies existence of a tensorial identity on the Sym3A subspace.
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– 42 –E8 family: Diophantine conditions

The A⊗A → A⊗A Diophantine conditions are satisfied only for

m 5 8 9 10 12 15 18 24 30 36

N 0 3 8 14 28 52 78 133 190 248

d5 0 0 1 7 56 273 650 1,463 1,520 0

d 0 -3 0 64 700 4,096 11,648 40,755 87,040 147,250

d Ó Ó Ó
Ó Ó Ó

Ó Ó Ó
Ô Ô Ô

Ô Ô Ô
Ô Ô Ô

0 0 27 189 1,701 10,829 34,749 152,152 392,445 779,247

I eliminate (indirectly) m = 30 by the semi-simplicity condition. J. M. Landsberg and L. Manivel1 identify

the m = 30 solution as a non-reductive Lie algebra.

1J. M. Landsberg and L. Manivel, Advances in Mathematics 171, 59-85 (2002); arXiv:math.AG/0107032, 2001
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– 43 –Exceptional magic

A closer scrutiny of the solutions (column,row) = (m, l) ∈ {8, 9, 10, 12, 15, 18, 24, 30, 36} to all V ⊗V̄ → V ⊗V̄

Diophantine conditions

m 8 9 10 12 15 18 20 24 30 36 40 · · · 360

F4 0 0 3 8 . 21 . 52 . · · · .

E6 0 0 2 8 16 . 35 36 78 . · · · .

E7 0 1 3 9 21 35 . 66 99 133 . · · · .

E8 3 8 14 28 52 78 . 133 190 248 . · · · .

leads to a surprise: all of them are the one and the same condition

N =
(` − 6)(m − 6)

3
− 72 +

360

`
+

360

m

magically arrange all exceptional families into a Magic Triangle.

All A ⊗ V Kronecker product characteristic equations are also of the same form

(Q − 1) (Q + 6/m)Pr = 0 .

J. M. Landsberg and L. Manivel1 identify the m = 30 column as a non-reductive Lie algebra.

1J. M. Landsberg and L. Manivel, Advances in Mathematics 171, 59-85 (2002); arXiv:math.AG/0107032, 2001
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– 44 –Magic Triangle

E 8
248

248

E 7
56

133

D6

66

32

E 7

133

133
E 6

78

78

F 4

52

26

F 4

52

52

A5
15

35

A5

35

20
C3

21

14

A2

8

6
E 6

78

27
2A2

16

9

C3

21

14
A2

8

8
A1

5

3

3A1

9

4

3A1

9

8

A1

3

3

A2

8

8
A1

3

3

U(1)
1

1

A1

3

4

(1)U2
2

2

(1)U2
3

2

U(1)
1

2

0

1

0

1

0

1

0

2

0

0

0

0

0

0

0

0

0

0

0

0

G2

14

14
D4

28

28

D4

28

8

2G
14

7

A2

8

3

A1

3

20

0

Magic triangle: All solutions of the Diophantine conditions place the defining and adjoint reps exceptional Lie

groups into a triangular array. Within each entry: the number in the upper left corner is N , the dimension

of the corresponding Lie algebra, and the number in the lower left corner is n, the dimension of the defining

rep.

The expressions for n for the top four rows are guesses. The triangle is called “magic”, because it contains

the Freudenthal’s Magic Square.
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– 45 –A brief history of exceptional magic

1975-77: Primitive invariants construction of all semi-simple Lie algebras1,2, except for the E8 family.

1979: E8 family primitivness assumption (no quartic primitive invariant), inspired by Okubo’s observation3

that the quartic Dynkin index vanishes for the exceptional Lie algebras.

1981: Magic Triangle, the E7 family and its SO(4)-family of “negative dimensional” relatives derived and

discussed in detail4. The total number of citations in the next 22 years: 2 (two).

1987(?)-2001: Angelopoulos5 classifies Lie algebras by the spectrum of the Casimir operator acting on A⊗A,

and, inter alia, obtains the same E8 family.

1995 : Vogel6 notes that for the exceptional groups the dimensions and casimirs of the A⊗A adjoint rep

tensor product decomposition P + P + P• + P + P are rational functions of parameter a (related to

my parameter m by a = 1/m − 6 . )

1996: Deligne7 conjectures that for A1, A2, G2, F4, E6, E7 and E8 the dimensions of higher tensor reps ⊗Ak

could likewise be expressed as rational functions of parameter a.

1996: Cohen and de Man8 computer verifications of the Deligne conjecture for all reps up to ⊗A4. They

1P. Cvitanović, Phys. Rev. D14, 1536 (1976)
2P. Cvitanović, Oxford preprint 40/77 (June 1977); www.nbi.dk/ChaosBook
3S. Okubo, J. Math. Phys. 20, 586 (1979)
4P. Cvitanović, Nucl. Phys. B188, 373 (1981)
5E. Angelopoulos, Panamerican Math. Jour. 2, 65-79 (2001)
6P. Vogel, “Algebraic structures on modules of diagrams,” preprint (1995)
7P. Deligne, C.R. Acad. Sci. Paris, Sér. I, 322, 321 (1996)
8A. M. Cohen and R. de Man, C.R. Acad. Sci. Paris, Ser. I, 322, 427 (1996)



note that “miraculously for all these rational functions both numerator and denominator factor in Q[a] as a

product of linear factors”. (This is immediate in my derivation)

1999: Cohen and de Man9 derive the same projection operators and dimension formulas by the same

birdtrack computations for the E8 family (do refer to my webbook, not noticing that the calculation is

already there).

2001-2003: J. M. Landsberg and L. Manivel10 utilise projective geometry and triality to interpret the

Magic Triangle, recover the known dimension and decomposition formulas, and derive an infinity of

higher-dimensional rep formulas.

2002: Deligne and Gross11 (re)discover the Magic Triangle.

9A. M. Cohen and R. de Man, in P. Drexler et al., Progress in Math. 173, Euroconf. Proceedings (Birkhäuser, Basel, 1999)
10J. M. Landsberg and L. Manivel, Advances in Mathematics 171, 59-85 (2002); arXiv:math.AG/0107032, 2001
11P. Deligne and B. H. Gross, C.R. Acad. Sci. Paris, Sér. I, 335, 2002 (2002)
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– 46 –Epilogue

“Why did you do this?” you might well ask.

OK, here is an answer.

It has to do with a conjecture of finiteness of gauge theories, which, by its own twisted logic, led to this

sidetrack, birdtracks and exceptional Lie algebras:

If gauge invariance of QED guarantees that all UV and IR divergences cancel, why not also the finite parts?

And indeed; when electron magnetic moment diagrams are grouped into gauge invariant subsets, a rather

surprising thing happens1; while the finite part of each Feynman diagram is of order of 10 to 100, every

subset computed so far adds up to approximately

±1

2

(α

π

)n

.

If you take this numerical observation seriously, the “zeroth” order approximation to the electron magnetic

moment is given by

1

2
(g − 2) =

1

2

α

π

1
(

1 −
(

α
π

)2
)2

+ “corrections”.

Now, this is a great heresy - my colleagues will tell you that Dyson has shown that the perturbation expansion

is an asymptotic series, in the sense that the nth order contribution should be exploding combinatorially

1

2
(g − 2) ≈ · · · + nn

(α

π

)n

+ · · · ,

1P. Cvitanović, “Asymptotic estimates and gauge invariance,” Nucl. Phys. B127, 176 (1977)



and not growing slowly like my estimate

1

2
(g − 2) ≈ · · · + n

(α

π

)n

+ · · · .

I kept looking for a simpler gauge theory in which I could compute many orders in perturbation theory and

check the conjecture. We learned how to count Feynman diagrams. I formulated a planar field theory whose

perturbation expansion is convergent. I learned how to compute the group weights of Feynman diagrams in

non-Abelian gauge theories. By marrying Poincaré to Feynman we found a new perturbative expansion more

compact than the standard Feynman diagram expansions. No dice. To this day I still do not know how to

prove or disprove the conjecture.

QCD quarks are supposed to come in three colors. This requires evaluation of SU(3) group theoretic factors,

something anyone can do. In the spirit of Teutonic completeness, I wanted to check all possible cases; what

would happen if the nucleon consisted of 4 quarks, doodling

Õ ÕÖ Ö × ×Ø Ø

Ù Ù ÙÚ Ú Û Û ÛÜ Ü

−
Ý Ý Ý

Ý Ý Ý

Þ Þ Þ
Þ Þ Þ

ß ßà à á áâ â = n(n2 − 1) ,

and so on, and so forth. In no time, and totally unexpectedly, all exceptional Lie groups arose, not from

conditions on Cartan lattices, but on the same geometrical footing as the classical invariance groups of

quadratic norms, SO(n), SU(n) and Sp (n).
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– 47 –Magic ahead

Nobody, but truly nobody in those days showed a glimmer of interest in the exceptional Lie algebra parts of

this work, so there was no pressure to publish it before completing it:

by completing it I mean finding the algorithms that would reduce any bubble diagram to a number for any

semi-simple Lie algebra. The task is accomplished for G2, but for F4, E6, E7 and E8 this is still an open

problem. This, perhaps, is only matter of algebra (all of my computations were done by hand, mostly on

trains and in airports), but the truly frustrating unanswered question is:

Where does the Magic Triangle come from? Why is it symmetric across the diagonal? Something is

happening here, but my derivation misses it. Most likely the starting idea - to classify all simple Lie groups

from the primitivness assumption - is flawed. Is there a mother of all Lie algebras, some complex function

which yields the Magic Triangle for a set of integer values?

And then there is a practical issue of unorthodox notation: transferring birdtracks from hand drawings to

LaTeX took another 21 years. In this I was rescued by Anders Johansen who undertook drawing some 4,000

birdtracks needed to complete this manuscript, of elegance far outstriping that of the old masters.


