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We utilize a diagrammatic notation for invariant tensors to construct the Young
projection operators for the irreducible representations of the unitary grénp U
prove their uniqueness, idempotency, and orthogonality, and rederive the formula
for their dimensions. We show that all(b) invariant scalar§3n—j coefficient$

can be constructed and evaluated diagrammatically from th@seYdung projec-

tion operators. We prove that the values of alhJ3n-j coefficients are propor-
tional to the dimension of the maximal representation in the coefficient, with the
proportionality factor fully determined by it§, symmetric group value. We also
derive a family of new sum rules for the 3-and 6 coefficients, and discuss
relations that follow from the negative dimensionality theorem2@5 American
Institute of Physics[DOI: 10.1063/1.1832753

I. INTRODUCTION

Symmetries are beautiful, and theoretical physics is replete with them, but there comes a time
when a calculation must be done. Innumerable calculations in high-energy physics, nuclear phys-
ics, atomic physics, and quantum chemistry require construction of irreducible many-particle
states(irreps, decomposition of Kronecker products of such states into irreps, and evaluations of
group theoretical weight@Nigner 3h—j symbols, reduced matrix elements, quantum field theory
“vacuum bubbles]. At such times effective calculational methods gain in appreciation.

In his 1841 fundamental pageon the determinants today known as “Jacobians,” Jacobi
initiated the theory of irreps of the symmetric gro8p Schur used th&, irreps to develop the
representation theory of Gh;C) in his 1901 dissertatioh,and already by 1903 the Young
tableau®”* came into use as a powerful tool for reduction of b&tand GL(n;C) representations.

In quantum theory the group of chofcis the unitary group (h), rather than the general linear
group GL(n;C). Today this theory forms the core of the representation theory of both discrete and
continuous groups, described in many excellent textb6o¥s.

Here we transcribe the theory of the Young projection operators into a form particularly well
suited to particle physics calculations, and show that the diagrammatic methods of Ref. 18 can be
profitably employed in explicit construction of (b) multiparticle states, and evaluation of the
associated 13— coefficients.

In diagrammatic notation tensor objects are manipulated without any explicit indices. Dia-
grammatic evaluation rules are intuitive and relations between tensors can often be grasped visu-
ally. Take as an example the reduction of a two-index teffigonto symmetric and antisymmetric
parts, T=(S+A)T, where

ST =3I+ (12)T;
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AT =3(1-(12)Ty,
andl and(12) denote the identity and the index transposition. Diagrammatically, the two projec-
tion operators are drawn as

s = ;{== o)
A= {=-c) "

It is clear at a glance th& symmetrizes and antisymmetrizes the two tensor indices. Here we
shall construct such projection operator for tensors of any rank.

Penrose’s papers are the fifknown to the authojsto cast the Young projection operators
into a diagrammatic form. Here we use Penrose diagrammatic notation for symmetrization
operatorsl,9 Levi—Civita tensor€’ and “strand networks™ For several specific, few-particle ex-
amples, diagrammatic Young projection operators were constructed by C&hMaggdula® and
Stedmarf® A diagrammatic construction of the(b) Young projection operators fany Young
tableau was outlined in Ref. 25, without proofs. Here we present the method in detail, as well as
the proof that the Young projection operators so constructed are Lﬁﬁqlhm other new results
are a proof that every () 3n—j coefficient is proportional to the dimension of the largest irrep
within the 2h—j diagram, and several sum rules fofry 3—j and 6 coefficients.

The paper is organized as follows. The diagrammatic notation for tensors is reviewed in Sec.
[l and the Young tableaux in Sec. Ill. This material is standard and the reader is referred to any of
the above cited monographs for further details. In Sec. IV we construct diagrammatic Young
projection operators for (), and give formulas for the normalizations and the dimensions of
U(n) irreps. In Sec. V we recast the Clebsch—Gordan recoupling relations into a diagrammatic
form, and show that—somewhat surprisingly—the values of &h)Bn-| coefficients follow
from the representation theory for the symmetric gr&@J@lone. The 8-j coefficients for Un)
are constructed from the Young projection operators and evaluated by diagrammatic methods in
Sec. V B. We derive a family of new sum rules fofr) 3n—|j coefficients in Sec. V C. In Sec. VI
we briefly discuss the case of 8t and mixed multiparticle antiparticle states. In Sec. VIl we
state and prove the negative dimensionality theorem fo) \Not only does this proof provide an
example of the power of diagrammatic methods, but the theorem also simplifies certain group
theoretic calculations. We summarize our results in Sec. VIII.

The key, but lengthy original result presented in this paper, the proof of the uniqueness,
completeness, and orthogonality of the Young projection opeﬁﬁﬁsrselegated to the appendix.

II. DIAGRAMMATIC NOTATION

In the diagrammatic notatidhan invariant tensor is drawn as a “blob” with a leg representing
each index. An arrow indicates whether it is an upper or lower index; lower index arrows always
point away from the blob whereas upper index arrows point into the blob. The index legs are
ordered in the counterclockwise direction around the blob, and if the indices are not cyclic there
must be an indication of where to start, for example,

start
Biomt e

e e
Ty = d-

b !

An internal line in a diagram implies a sum over the corresponding index: matrix multiplication is
drawn as

M= o e
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o F -F
EE-F
"FHE-F

FIG. 1. Properties of the diagrammatic symmetrization and antisymmetrization operators.

where the indesb can be omitted, as indeed can all other “dummy” indices. The Kronecker delta
is drawn as

0f = b—st—a a,b=1,2,...,n,

and its trace—the dimension of the representation—is drawn as a closed loop,

O-e=n. o

Index permutations can be drawn in terms of Kronecker deltas. For example, the symmetric
group S, acting on two indices consists of the identity elemipti= 5‘;6?) and the transposition
(12) %= &40, In the diagrammatic notation these operators are drawn as

ed a.._4__d
]Iab - p —— ¢ and (12 ab bx

Symmetrization ofp indices is achieved by adding all permutations of p indices, S
:(1/p!)2(,63p ) (P 5‘§P Similarly, the operatdk= (1/pl)2,,esp sgn(o) & 5";;) (with a mi-
nus — for odd permutatlomsantlsymmetrlzesp indices. Combinations of symmetrize8and
antisymmetrizerd\ are collectively referred to asymmetry operators

In the diagrammatic notation we write the symmetrizers and the antisymmetriziersgth p

as”?
%=%(E+E++f+> -

”.S_Illf—‘
TN
gl
FIX
+
X
+
SN’

(4)

In order to streamline the notation we shall neglect the arrows whenever this leads to no confu-
sion. Basic properties of the symmetry operators are listed in Fig. 1: A symmetrizer is invariant
under any permutation of its legs, rul@. The antisymmetrizer changes sign under odd permu-
tations, rule(b). A symmetrizer connected by more than one line to an antisymmetrizer is zero by

rules(a) and(b),

Recursive identities for thé@ant)symmetrizers are given ifA5) and (A4).

(5)
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IIl. YOUNG TABLEAUX

Partitionk identical boxes intd subsets, and let,, m=1,2,...,D, be the number of boxes
in the subsets ordered so thet=\, --=\p=1. Then the partitiol\=[A{,\,,---,\p] fulfills
E,?pﬁ\an- The diagram obtained by drawing tii® rows of boxes on top of each other, left
aligned, starting with\; at the top, is called ¥oung diagrany.

Inserting each number from the dét,...,k} into a box of a Young diagram Y in such a way
that numbers increase when reading a column from top to bottom and numbers do not decrease
when reading a row from left to right yields¥oung tableaw ,. The subscript labels different
tableaux derived from a given Young diagram, i.e., different admissible ways of inserting the
numbers into the boxes. gtandard tableaus ak-box Young tableau constructed by inserting the
numbers 1...,k according to the above rules, but using each number exactly once.

As an example, three distinct standard tableaux,

Y Y k)
L4]
are obtained from the four-box Young diagram with partition[2,1, 1].

A. Symmetric group S,

Young diagrams label the irreps of the symmetric gr&ipA k-box Young diagram Y corre-
sponds to an irrep d§, andA,, the dimension of the irrep, is the number of standard tableaux
Y 5 that can be constructed from the Young diagram Y. From the above example we see that the
irrepA=[2,1,1] of S, is three dimensional. The formula for the dimensiop of the irrep ofS,
corresponding to the Young diagram Y is

k!

Ay=—
v

(6)

The numberY| is computed using a “hook” rule: Enter into each box of the Young diagram the
number of boxes below and to the left of the box, including the box itself. TYigis the product
of the numbers in all the boxes. For instance,

[ ] 3
Y= | —  Y|= 1] =6'3.

|N4>0\
I—-um

The hook rule(6) was first proved surprisingly late, in 1954, by Frame, de B. Robinson, and
Thrall2” Various proofs can be found in Ref28-3Lin particular, see Sag&hand references
therein.

B. Representations of U (n)

While every Young diagram labels an irrep 8f every standard tableau labels an irrep of
U(n). The dimensiordy of an irrep labeled by the Young diagram Y equals the number of Young
tableaux Y, that can be obtained from Y by inserting numbers from thegs¢e2,...,n} such that
the numbers increase in each column and do not decrease in each row.
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For example, for SU (2) the partition [2] corresponds to a three - dimensional irrep with tableaux
0I1], (2], and [2I2], and the partition [1, 1] corresponds to a one-dimensional irrep with one
tableau, . Similarly, one can check that for SU (3), the partition[2]is six dimensional and the
partition [1, 1] is three dimensional. We shall derive the dimension formula for any irrep of U(n)
in Sec. IV C.

IV. YOUNG PROJECTION OPERATORS

We now present a diagrammatic method for construction of Young projection operators. A
combinatorial version of these operators was given by van der Wagtdeno credited von
Neumann. There are many other versions in the literature, all of them illustrating the fundamental
theorem of 't Hooft and Veltmar combinatorics cannot be taught. What follows might aid those
who think visually.

A. The group algebra

Our goal is to construct the projection operators suckilagor any irrep ofS,. We need to
construct a basis set of invariant tensors, multiply them by scalars, add and subtract them, and
multiply a tensor by another tensor. The necessary framework is provided by the nogoyupf
algebra

The elementsr€ S, of the symmetric grou®, form a basis of &!-dimensional vector space
V of elements

s= > s,0E€V, (7)
TES

wheres, are the components of the vect®m the given basis. 1§, t&V have componentts,)

and (t,), we define the product of and t as the vectorst in V with components(st),
=2,e5St-10. This multiplication is associative because it relies on the associative group opera-
tion. SinceV is closed under the multiplication the element8/dbrm an associative algebra—the
group algebraof S.. Acting on an elemens€V with any group element mapsto another
element in the algebra, hence this map givéd-dimensional matrix representation of the group
algebra, theegular representationNote that the matrices of any representatioof the group is

also a basis for representation of the algebra: Do) denote alpossibly reduciblerepresen-
tation of S.. The group algebra d§, in the representatiop then consists of elements

DX(s)= , s,D*(o) EV,
TES

wheres s given by(7). The minimal left-ideald/, of the group algebré.e.,sV, =V, for all sV,
andV, has no proper subidealare the proper invariant subspaces corresponding to the irreps of
the symmetric groufs,.

The regular representation is reducible and each irrep appgairses in the reduction, where
A, is the dimension of the subspa¥g corresponding to the irrep. This gives the well-known
relation between the order of the symmetric grd8d =k! (the dimension of the regular repre-
sentation and the dimensions of the irreps,

IS{= > AL

irreps\

Using (6) and the fact that the Young diagrams label the irrep§pfve have
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1
1=K —, (8)
(k) |Y|2

where the sum is over all Young diagrams withoxes. We shall use this relation to determine the
normalization of Young projection operators in the Appendix.
The reduction of the regular representationSpfjives a completeness relation

1= Py
(k)
into projection operators

Py= 2> Py,
YEY

The sum is over all Young tableaux derived from the Young diagram Y. E’aghprojects onto
the corresponding invariant subspaég . For each Y there ardy such projection operators
(corresponding to thAy possible standard arrangements of the diagmd each of these project
onto one of thely invariant subspaces, of the reduction of the regular representation. It follows
that the projection operators are orthogonal and that they constitute a complete set.

B. Diagrammatic Young projection operators

We now generaliz¢l), the S, projection operators expressed in terms of Kronecker deltas, to
Young projection operator for ang,.

The Kronecker delta is invariant under unitary transformati@ﬁs(u‘”);' ég:Ub,b, ueu(n),
and so is any combination of Kronecker deltas, such as the symmetrizers of Fig. 1. Since these
operators constitute a complete set, ar(y)Unvariant tensor built from Kronecker deltas can be
written in terms of symmetrizers and antisymmetrizers. In particular, the invariance of the Kro-
necker delta under (@) transformations implies that the same symmetry group operators which
project the irreps o, also yield the irreps of (h).

The simplest examples of Young projection operators are those associated with the Young
tableaux consisting of either one row or one column. The corresponding Young projection opera-
tors are simply the symmetrizef8) or the antisymmetrizer$4), respectively. As projection
operators foiS,, the symmetrizer projects onto the one-dimensional subspace corresponding to the
fully symmetric representation, and the antisymmetrizer projects onto the alternating representa-
tion.

A Young projection operator for a mixed symmetry Young tableau will here be constructed by
first antisymmetrizing subsets of indices, and then symmetrizing other subsets of indices; which
subsets are dictated by the form of the Young tableau, as will be explained shortly. Schematically,

Py, = aym )

whereay is a normalization constaritiefined below ensuring that the operators are idempotent,
Py Py =6apPy . This particular form of projection operators is by no means unique—Young
projection operators symmetric under transposition are constructed in Ref. 18—but is particularly
convenient for explicit computations

Let Y, be ak-box standard tableau. Arrange a set of symmetrizers corresponding to the rows
in Y,, and to the right of this arrange a set of antisymmetrizers corresponding to the columns in
Y .. For a Young diagram Y witls rows andt columns we label the rows;SS,, ..., S and to the
columns A, A,,...,A;. Each symmetry operator iﬁYa is associated with a row/column ingY
hence we label a symmetry operator after the corresponding row/column, for example
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\ Ap Ay Az Ay As

si n"'i"'a"}';![ﬂ

52;6 7

fL

Let the lines numbered 1 toenter the symmetrizers as described by the numbers in the boxes in
the standard tableau and connect the set of symmetrizers to the set of antisymmetrizers in a
nonvanishing way, avoiding multiple intermediate lines prohibited(®y Finally, arrange the
lines coming out of the antisymmetrizers such that if the lines all passed straight through the
symmetry operators, they would exit in the same order as they entered.

We shall denote by, the dimensions of irreps &,, and byd, the dimensions of irreps of
U(n). Let |S| or |A;| denote the number of boxes within a row or column, respectively. TAlis
also denotes the number of lines entering the antisymmetfizeand similarly for the symme-
trizers. The normalization constaat, is given by

T[S Ty A
M ’

ay =

where |Y| is related through6) to Ay, the dimension of irrep Y o5, and is a hook rules,
combinatoric number. The normalization depends only on the shape of the Young diagram, not the
particular tableau. The Young projection operators

(1) areidempotentP2=Py;
(2) areorthogonal if Y and Z are two distinct standard tableaux, thepP,=P,P,=0; and
(3) constitute a&omplete set =>Py, where the sum is over all standard tableaux Ywitioxes.

The projections are unique up to an overall sign. By construction, the identity element always
appears as a term in the expansion of the symmetry operators of the Young projection operators—
the overall sign is fixed by requiring that the identity element comes with a positive coefficient.
The diagrammatic proof that the above rules indeed assign a unique projection operator to each
standard tableaux is the central result of this paper; as it would impede the flow of our argument
at this point, it is placed in the Appendix.

Example:The Young diagram corresponding to the partit[@) 1] tells us to use one sym-
metrizer of length three, one of length one, one antisymmetrizer of length two, and two of length
one. There are three distinct standard tableaux, each corresponding to a projection operator

|23l _

: re = Qy

o e

2% - - H58
===~ Y
s - 25
-<- o ad ’

whereay is the normalization constant. The symmetry operators of unit width need not be drawn
explicitly. We have|Y | =8, |S,| =3, |S,| =1, |A{| =2, etc., yielding the normalizatioay =3/2.

C. Dimensions of U (n) irreps

The dimensiordy of a U(n) irrep is computed by taking the trace of the corresponding Young
projection operatorgdy =tr Py. The trace can be evaluated by expanding the symmetry operators
using (3) and(4). By (2), each closed line is worth, sody is a polynomial inn of degreek.

Example:The dimension of a three-index Young projection operator,
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PSR- ) (RS
= =)

ol i

(9)

n(n®-1)
5

Such brute expansion is unnecessarily laborious: The dimension of the irrep labeled by Y is

1
=§(n3+n2—n2—n)= (10)

_

d_ 1
YT

(13)
where fy(n) is the polynomial inn obtained from the Young diagram Y by multiplying the
numbers written in the boxes of Y, according to the following rules) The upper left box
contains am. (B) The numbers in a row increase by 1 when reading from left to rig)tThe
numbers in a column decrease by 1 when reading from top to bottom. Herkcis, tifie number
of boxes in Y,fy(n) is a polynomial inn of degreek. The dimension formuléll) is well known,
see for instance Ref. 11.

In the examplg10), we havefy(n)=n(n-1)(n+1) and|Y|=3, givingdy=n(n?-1)/3.

Example:For Y=[4,2,1] we have

Tl
:;-"J ¥ - 1)(r*-4)(n+3)
6l4]211] 144 :
31

1

EJ

dy

A diagrammatic proof of the (h) dimension formulg11) is given in the Appendix.
Diagrammatically, the numbedr, (n) is the number oh-color colorings of the strand network
corresponding to tPy, see, for example, Ref. 18.

D. Examples

We present examples to illustrate decomposition of reducible representation into irreps using
the diagrammatic projection operators.

The Young diagranid corresponds to the fundamentadimensional irrep of (h). As we
saw in(1), the direct product of two of thesedimensional representations ism&dimensional
reducible representation,

o0 = [ @& fH (12)
— = dE + & (13
2 n(n2—+— 1) + n(n2— 1) . (14)

Equation(12) shows the decomposition of the reducible representation in terms of Young dia-
grams, and13) gives the corresponding projection operators. Tra¢i8) yields the dimensions
(14) of the irreps.

The first nontrivial example is the reduction of the three-index tensor Young projection op-
erators, listed in Fig. 2. Further examples can be found in Ref. 18.
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Y. dv, Py,
nnt1)(nt2) H:E
6

[1]2] -1 |4

3 2-1

1P| e so

!"_265"_1!" 1
Mellel] =»° =

FIG. 2. Reduction of a three-index tensor. Bottom row; the direct product of three unit tableaux, the sum of dimensions,
and the projection operators completeness sum.

The four projectors are orthogonal by inspection. In order to verify the completeness, expand
first the two three-index projection operators of mixed symmetry,

3 (Ol +5E)-1=-32< - ;3¢ (15)

In the sum of the fully symmetric and the fully antisymmetric tensors all the odd permutations
cancel, and we are left with

A= =2+ (16)
Adding (15) and (16) we find

TE Ol OEE-=

verifying the completeness relation.

Acting with any permutation on the fully symmetric or antisymmetric projection operators
gives =1 times the projection operat¢see Fig. 1 For projection operators of mixed symmetry
the action of a permutation is not as simple, because the permutations will mix the spaces corre-
sponding to the different tableaux. Here we shall need only the action of a permutation within a
3n-j coefficient, and, as we shall show below, in this case the result will again be simple, a factor
*1 or 0.

V. RECOUPLING RELATIONS

In the spirit of Feynman diagrams, group theoretic weights with all indices contracted can be
drawn as “vacuum bubbles.” We now show that fainJany such vacuum bubble can be evalu-
ated diagrammatically, either directly, as a-3 coefficient, or following a reduction to 3j-and
6 -] coefficients. The exposition of this section follows closely Ref. 18; the reader can find there
more details, as well as the precise relationship between ojiraBet 6 coefficients, and the
Wigner 3 and 6 symbols®

The decomposition of a many-particle state can be implemented sequentially, decomposing
two-particle states at each step. The Clebsch—Gordan coefficientsgf@-XY can be drawn as
3-vertices
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1 v X<
\/a Z ’ (17)

where 1Aa is an (arbitrary) normalization constant. The projection operators fop X—Y
—X®Z can be drawn as

z (18)

and the completeness relation can be drawn as

X
-—-(-)-(- Z 1 Y
z v ’
—— Y Y

z (19

where the sum is over all irreps contained i®X.
The normalization constart can be computed by tracinds),

X
=aO=ady,
¥a

wheredy is the dimension of the representation Y. The vacuum bubble on the left-hand side is
called a 34 coefficient. More generally, vacuum bubbles witines are calledh—j coefficients.

Let particles in representations U and V interact by exchanging a particle in the representation
W, with the final state particles in the representations X and Z,

By the orthogonality of irreps Y=Y, and we obtain theecoupling relation
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Sod-r

FIG. 3. Areduction of a 4-vertex loop to a sum of “tree” tensors, weighted by products joaBa 6 coefficients.

v > dy — ;:Ex H
Y Z v
SIS "

The “Mercedes” vacuum bubbles in the numerators are called defficients.Any arbitrarily
complicated vacuum bubble can be reduced tg @nd 6 coefficients by recursive use of the
recoupling relation(20). For instance, a four-vertex loop can be reduced to a two-vertex loop by
repeated application of the recoupling relations as sketched in Fig. 3.

Another, more explicit example of a sequence of recouplings, is the following step-by-step
reduction of a five-particle state:

v

N *
>‘§<

1
]
Il
i
%
|
=
b
I
N

(for brevity we omit the normalization factors hgrdfaking the trace of both sides leads to

12-j coefficients of the form
w—_"

O
(21)

A. U(n) recoupling relations

Due to the overall particle number conservatim® consider no “antiparticle” states hgréor
U(n) the above five-particle recoupling flow takes a very specific form in terms of Young projec-
tion operators,

3=
T LEET N EHEE T

More generally, we can visualize any sequence @f)Uairwise Clebsch—Gordan reductions as a
flow with lines joining into thicker and thicker projection operators, always ending in a maximal
Py which spans across all lines.

In the trace(21) we can use the idempotency of the projection operators to double the
maximal Young projection operatdt,, and sandwich by it all smaller projection operators,

Preermers
<S—
P
e
Pr———

(22)

From uniqueness of the connection between the symmetry opetséershe Appendix) lwe have

for any permutatiorr€ S,
IH' =My k;l H
(23

wherem,=0, +1. Expressions liké€22) can be evaluated by expanding the projection operators
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Pw. Px, P; and determining the value af,, of (23) for each permutation- of the expansion. The

result is
= M(Y; W, X, Z),

where the factoM(Y;W,X,Z) does not dependn n and is determined by a purely symmetric
group calculation. Several examples follow.

B. Evaluation of 3 n-j coefficients

Let X, Y, and Z be irreps of (h). In terms of the Young projection operatd®g, Py, andP,
a U(n) three-vertex(17) is obtained by tying together the three Young projection operators,

22
2 ' (24)

The number of particles is conservétthe multiparticle states constructed here consist only of
particles, no “antiparticleg’ kg +k;=ky. A 3—] coefficient constructed from the verté4) is
then

(25)

As an example, take

Then

(26)

In principle the value of such 3j—coefficient can be computed by expanding out all symmetry
operators, but that is not recommended as the number of terms in such expansions grows combi-
natorially with the total number of boxes in the Young diagram Y. Instead, the answer—in this
casedy =(n’-1)n(n+1)(n+2)/144— is obtained as follows.

In general, the 3} coefficients(25) can be evaluated by expanding the projectiBpsand P
and determing the value ofi, in (23) for each permutatiow of the expansion.

As an example, consider the 3 €oefficient(26). With Py as in(26) we find

Tl = i = - 3¢ + 2< - >€}
me(Px) : +1 0 +1 -1

me(Pgz): +1 -1 0 -1,

hence
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= (3 exea L=

and the value of the 3j-is dy as claimed in(26). That the eigenvalue happens to be 1 is an
accident—in tabulations of 3j—coefficient§6 it takes a range of values.

The relation(23) implies that the value of any @) 3—j coefficient(25) is M(Y;X,Z)dy,
wheredy is the dimension of the maximal irrep Y.

A 6-j coefficient is composed of the three-vert€l’) and the other three-vertex in the
projection operato(24), with all arrows reversed. A general(l) 6-j coefficient has the form

(27)

Using the relation23) we immediately see that

X u
@ ) MdY’
Y (28)

whereM is a pure symmetric grouf,y number, independent of(d); it is surprising that the only
vestige of Un) is the fact that the value of a §-coefficient is proportional to the dimensiaok
of its largest projection operator.

Example:Consider the 6} constructed from the Young tableaux,

U:’\/=[E7 Wz’
]3]

x=, Y =5, z=pH.
4]

Using the idempotency we can double the projeciynand sandwich the other operators, as in
(22). Several terms cancel in the expansion of the sandwiched operator, and we left with

_ )= —_— . K -~
EE]:.:_%{:J?_C — ><+X_§_%+3§}‘
Mg +1 0 -1 0 0 -1 0 +1
We have listed the symmetry factors, of (23) for each of the permutations sandwiched

between the projection operatdPs. We find that in this example the symmetric group fadtbr
of (28) is

4 1
M= ?auavawaxaz = 5,

x Y 1 nn®-1)(n-2
@zgd_"—ﬂn__),

The method generalizes to evaluations of any Bcoefficients of Wn).

so the value of the 6j-is
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C. Sum rules

Let Y be a standard tableau wiky boxes, and let\ be the set of all standard tableaux with
one or more boxegexclude the trivialk=0 representation Then the 3+ coefficients obey the

sum rule
Z @ = (ky — D)dy.
X,ZEA 2 (29)

The sum is finite, because the Bis nonvanishing only if the number of boxes in X and Z add up
to ky, and this happens only for a finite number of tableaux.

To prove (29), recall that the Young projection operators constitute a complete set,
EXEAKPX:]I, wherel is the kX k unit matrix andA the set of all standard tableaux of Young
diagrams withk boxes. Hence

X .
X,ZeA @

= (ky — 1)dy.

This sum rule offers a useful cross-check on tabulations gf Btues, see for instance Ref. 26.
There is a similar sum rule for the §-coefficients,

2 @ = Sl = 1)y —2)dy.
X,Z,U,V,WeA (30)

Referring to the 6 (27), let ky be the number of boxes in the Young diagrami),be the
number of boxes in X, etc., and Ik} be given. From(27) we see thaky takes values between 1
andky —2 andk; takes values between 2 akg-1, subject to the constraify +k,=ky. We now
sum over all tableaux U, V, and W keepikg, ky, andk, fixed. Note thak, can take values 1,,
k,—1. Using completeness we find

X U kz—1
U,V,WeA ky=1 VEAkv WGAkz—kv UEAky-kV

Now sum over all tableaux X and Z to find
X U ky—1 z

= Y- Y 3 = Sy — Dby - 2)dy

X,Z,UV,WeA ¥ kz=2 ZEAky XEAby—ky R

verifying the sum rulg30) for 6—j coefficients.



043501-15  Diagrammatic Young projection operators for U(n) J. Math. Phys. 46, 043501 (2005)

VI. SU(N) AND ITS ADJOINT REPRESENTATION

The SUnN) group elements satisfy det U=1, so @Uhas an additional invariant, the Levi—
Civita tensor

al | a a/
€. . =U.%y. 2%..U. Fe, . .
aay-an™ Ya; T -a, a “ajay Ay

In the diagrammatic notation the Levi—Civita tensors can be drafth as

1 o 1 Qp...G207 __ E :;
ﬁsalagmu” :ajﬂv ﬁg e H a"'
-

(Levi—Civita projects am-particle state onto a single, one-dimensional, singlet representation

and are correctly normalized,
E - 1 .

The Young diagrams for Sd) cannot contain more thamrows, since at most indices can
be antisymmetrized. By contraction with the Levi-Civita tensor, a column Witloxes can be
converted into a column af—k boxes: this operation associates to each irregtimgugateirrep.
The Young diagram corresponding to the irrep is thajugateYoung diagram constructed from
the missing pieces needed to complete the rectangterafvs. For example, the conjugate of the
irrep corresponding to the partitiqd, 2, 2, 1 of SU(6) has the partitiori4, 4, 3, 2, Z:

|
|

They satisfy

&
SU(6) : <&

The Levi—Civita tensor converts an antisymmetrized collectiom-of “in” indices, an(n

-1)-particle state, into 1 “out” index: a single antiparticle statgthe conjugate of the fundamen-

tal representation] single particle state. The corresponding Young diagram is a single column of
n—1 boxes. The product of the fundamental representation and the conjugate representation of
SU(n) decomposes into a singlet and the adjoint representation,

In the notation introduced in Sec. IV, the Young projection operator for the adjoint representation

A is drawn as
n - -

Using P, and the definitior{24) of the three-vertex, S() group theory weights involving quarks,
antiquarks, and gluons can be calculated by expansion of the symmetry operators or by application
of the recoupling relation. When the adjoint representation plays a key role, as it does in gauge
theories, it is wisest to abandon the above construction of all irreps by Clebsch—Gordan reductions
of multiparticle states, and build the theory by taking a single particle and a single antiparticle as
the fundamental building blocks. A much richer theory, beyond the scope of this paper follows,
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leading to a diagrammatic construction of representations of all simple Lie groups, the classical as
well as the exceptional. The reader is referred to Ref. 18 for the full exposition.

VII. NEGATIVE DIMENSIONS

We conclude by a brief discussion of implications of the:—n duality18'36 of U(n) invariant
scalars.

Any SU(n) invariant tensor is built from Kronecker deltas and Levi—Civita tensors. A scalar is
a tensor object with all indices contracted, so in the diagrammatic notation a scalar is a diagram
with no external legs, a vacuum bubble. Thus, in scalars Levi—Civita tensors can appear only in
pairs (the lines must end somewhgrand by(31) the Levi—Civita tensors combine to antisym-
metrizers. Consequently both(t) and SUn) invariant scalars are all built only from symmetriz-
ers and antisymmetrizers.

Expanding all symmetry operators in ) vacuum bubble gives a sum of entangled loops.
Each loop is wort, so each term in the sum is a powempfind therefore a () invariant scalar
is a polynomial inn.

The negative dimensionality theor&hi®for U(n) states that interchanging symmetrizers and
antisymmetrizers in (h) invariant scalar is equivalerfip to an overall signto substitutingn
—=—n in the polynomial, which is the value of the scalar. We write this

U(n) =U(-n).

The bar symbolizes the interchange of symmetrizers and antisymmetrizers.
The terms in the expansion of all symmetry operators in(a) Wacuum bubble can be
arranged in pairs that only differ by one crossing,

with = depending on whether the crossing is due to symmetrizdtignor antisymmetrization
(—). The gray blobs symbolize the tangle of lines common to the two terms.

If the two arcs outside the gray blob of the first term(82) belong to separate loops, then in
the second term they will belong to the same loop. The two terms thus differ only by a factor of

n: schematically,
©-®

Likewise, if the arcs in the first term belong to the same loop then in the second term they will
belong to two separate loops. In this case the first termnditifes the second term. In either case
the ratio of the two terms is an odd powerrofinterchanging symmetrizers and antisymmetrizers
in a U(n) vacuum bubble changes the sign(8®2). Up to an overall sign the result is the same as
substitutingn— —n. This proves the theorem.

Consider now the implications for the dimension formulas and the valuesof 8oeffi-
cients. The dimension of an irrep of(k) is the trace of the Young projection operator, a vacuum
bubble diagram built from symmetrizers and antisymmetrizers. Applying the negative dimension-
ality theorem we gethy«(n)=dy(—n), where Y is thetransposeY" of the standard Young tableau
Y obtained by interchanging rows and colurireflection across the diagonalFor instancé3, 1]

is the transpose d&, 1, 1],
t n 3]
_
<) - .

As an example, note the— —n dualities in the dimension formulas of Fig. 2.
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Now for standard tableaux X, Y, and Z, compare the diagram of thec®nstructed from X,
Y, and Z to that constructed from'XZ!, and Y. The diagrams are related by a reflection in a
vertical line, reversal of all the arrows on the lines, and interchange of symmetrizers and antisym-
metrizers. The first two operations do not change the value of the diagram, hence the values of the
two diagrams are again related by——n (and possibly an overall sign; this sign is fixed by
requiring that the highest power afcomes with a positive coefficientHence in tabulation it is
sufficient to calculate approximately half of all $s. The 3+ sum rule(29) provides a cross-

check.

The two 6+ coefficients
are related by a reflection in a vertical line, reversal of all the arrows on the lines, and interchange
of symmetrizers and antisymmetrizers—this can be seen by writing out thec@efficients in
terms of the Young projection operators as(27). By the negative dimensionality theorem, the
values of the two 6} coefficients are therefore again relatedriy —n.

VIIl. SUMMARY

We have presented a diagrammatic method for construction of correctly normalized Young
projection operators for (). These projection operators in diagrammatic form are useful for
explicit evaluation of group theoretic quantities such as the j3coefficients. Using the recou-
pling relations, all Wn) invariant scalars can be reduced to expressions involving only terms of
3-j and 6+ coefficients and the dimensionalities of the representations. Our main results are as
follows:

(i) Diagrammatic Young projection operators for tens@multiparticle states with given
symmetry properties; a diagrammatic proof of their uniqueness, completeness, and
orthogonality.

(i) U(n) invariant scalars may be expressed in terms of the Young projection operators, and
their values computed by diagrammatic expansions.

(i) U(n) 3—j and 64 coefficients constructed from the three-vertex defined24) have
simple n-dependencies: they are proportional to the dimension of the maximal irrep pro-
jection operator that spans over all multiparticle indices.

(iv)  The negative dimensionality theorem applies to glh)JUnvariant scalars, in particular the
3n-j coefficients and the dimensions of the irreps ghlJ

(v)  The sum ruleg29) and (30) for 3—j and 6 coefficients afford useful cross-checks of
3n—-j tabulations.
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APPENDIX: DIAGRAMMATIC YOUNG PROJECTION OPERATORS: THE PROOFS

In this appendix we prove the properties of the Young projection operators stated above in
Sec. IV.
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FIG. 4. There is a uniquéup to an overall sighconnection between the symmetrizers and the antisymmetrizers, so the
Young projection operators are well defined by the construction procedure explained in the text. The figure shows the
principles of the proof. The dots on the middle Young diagram mark boxes that correspond to contracted lines.

Uniqueness

We show that the Young projection operat&sare well defined by proving the existence and
uniguenesgup to an overall signof a nonvanishing connection between the symmetrizers and
antisymmetrizers irPy.

The proof is by induction over the number of coluntni® the Young diagram Y; the prin-
ciples are illustrated in Fig. 4. For=1 the Young projection operator consists of one antisymme-
trizer of lengths ands symmetrizers of length 1, and clearly the connection can only be made in
one way, up to an overall sign, see Figb)l

Assume the result to hold for Young projection operators derived from Young diagrams with
t—1 columns. Let Y be a Young diagram wittcolumns. The lines from Ain Py must connect
to different symmetrizers for the connection to be nonzero. Since there are d¥ag¢tiymme-
trizers inPy, this can be done in essentially one way, since which line goes to which symmetrizer
is only a matter of an overall sign, and where a line enters a symmetrizer is irrelevant due to Fig.
1(a).

After having connected A connecting the symmetry operators in the restPof is the
problem of connecting symmetrizers to antisymmetrizers in the Young projection opExator
where Y is the Young diagram obtained from Y by slicing off the first column. Thush¥sk
-1 columns, so by the induction hypothesis the rest of the symmetry operatés @an be
connected in exactly one nonvanishing w@ayp to an overall sign

Orthogonality

If Y, and Y, denote standard tableaux derived from the same Young diagram Y, then
Py Py, =Py Py = 5abP$a, since there is a permutation of the lines connecting the symmetry op-
erators of Y with those of Z and by uniqueness of the nonzero connection the result isPéi;her
(if Y a=Yy) or (if Y ;#Yy).

Next, consider two different Young diagrams Y and Z with the same number of boxes. Since
at least one column must be bigger(say Y than in Z and thep lines from the corresponding
antisymmetrizer must connect to different symmetrizers, it is not possible to make a nonzero
connection between the antisymmetrizersPQg to the symmetrizers iR,, where subscripta and
b denote any standard tableaux of Y and Z. HerR;,%PZfO, and by a similar argument
PZbPYa:O'

Normalization and completeness

We now derive the formula for the normalization factey such that the Young projection
operators are idempotenP,\Z,a: Py, By the normalization of the symmetry operators, Young
projection operators corresponding to fully symmetric or antisymmetric Young tableaux will be
idempotent withay =1.

DiagrammaticaIIyP\Z(a is simply Py, connected tPy , hence it may be viewed as a set of
outersymmetry operators connected by a sehokr symmetry operators. Expanding all the inner
symmetry operators and using the uniqueness of the nonzero connection between the symmetrizers
and antisymmetrizers of the Young projection operators, we find that each term in the expansion is
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either O or a copy 01‘3Y For a Young diagram witls rows andt columns there will be a factor
of 1/|S[1(1/|A[!) from the expansion of each innént)symmetrizer, so we find

P, = aim
T T, IS l'n, IIA I'Z "‘

Py,

Tl IS0 I'H =1 141!

where the sum is over permutatienfrom the expansion of the inner symmetry operators. Note
that by the uniqueness of the connection between the symmetrizers and antisymmetrizers, the
constantxy is independent of which tableau gives rise to the projection, and consequently the
normalization constant, depends only on the Young diagram and not the tableau.

For a givenk, consider the Young projection operatd?s_ corresponding to all thé&-box
Young tableaux. Since the operatéts are orthogonal and in one-to-one correspondence with the
Young tableaux, it follows from the discussion in Sec. IV A that there are no other operators of
lines orthogonal to this set. Hence tﬁea’s form a complete set, so that

I= E Pya. (Al)
Ya

Expanding the projections the identity appears only once, so we have

Pro = ove ISI'IH |A|,(p£+---),

and using this, equatiofAl) states

_m ay/lY| )
< ‘;H;usmn;:lmju 2

since all permutation different from the identity must cancel. When changing the sum from a sum
over the tableaux to a sum over the Young diagrams we usexhdepends only on the diagram
and that there ard, =k!/|Y| k-standard tableaux for a given diagram. Choosing

Itlll
I§|||

II71| STy A
— i=1 =11 A

the factor on the right-hand side 42) is 1 by (8).

Since the choice of normalizatiqgA3) gives the completeness relatiohl), it follows that it
also gives |demp0tent operators, multlplylngFBy on both sides ofAl) and using orthogonality,
we find Pz, = PZ for any Young tableau ¢
Dimensionality

To prove the dimension formuldl) we need the identities

E:E=z%(”ﬁ_:E+(p_l)"" ) (A4)

f - % (T ~P=1z ) (A5)

given in Ref. 18. For Young tableaux with a single row or column, the dimension formula can be
derived directly using the relatiori&4) and (A5).

and
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Let Y be a standard tableau withboxes, and Y the standard Young tableau obtained from
it by removing the box containink. Draw the Young projection operators corresponding to Y and
Y’ and note thaPy with the “last” line traced is proportional tBy .

Quite generally the contraction of the last line will look like

Restof By

(AB)
Using (A4) and (A5) we have

C(s=1(@-1) %
st

Inserting this into(A6) we see that the first term is proportional to the projection opeRfor
The second term vanishes,

If we ignore the internal structure within the dotted box we see that this is exactly of the form of
Py, except that the “last” symmetrizers and antisymmetrizers are connected by a line. There is a
unigue nonvanishing way of connecting the symmetrizers and antisymmetrizBs,iand the
“last” symmetrizer and antisymmetrizer are not connected in this, as they correspond to a row and
column with no common box in the Young tableau. Therefore every term obtained from the
expansion of the dotted box must vanish.

The dimensionality formula follows by induction on the number of boxes in the Young
diagrams with the dimension of a single box Young diagram bairiget Y be a Young diagram
with p boxes. We assume that the dimensionality formula is valid for any Young diagram with
p-1 boxes. WithPy, obtained fromPy, as above, we havéusing the above calculation and
writing Dy for the diagrammatic part d?y)

, n-t+s [Y’| fvo fy
dim PY:aY tr DY: Ay tr DY' :(n—t+S)ayr—lT DY' :(n—t+S T
st Y| Y[ 1yl

This completes the proof of the dimensionality formd).
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