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Chapter One

Introduction

This monograph offers a derivation of all classical and exceptional semisimple
Lie algebras through a classification of “primitive invariants.” Using somewhat
unconventional notation inspired by the Feynman diagrams of quantum field theory,
the invariant tensors are represented by diagrams; severe limits on what simple
groups could possibly exist are deduced by requiring that irreducible representations
be of integer dimension. The method provides the full Killing-Cartan list of all
possible simple Lie algebras, but fails to prove the existence of F'4, Eg, F7 and Es.

One simple quantum field theory question started this project; what is the group-
theoretic factor for the following Quantum Chromodynamics gluon self-energy di-

agram
@ 7 (L)

I first computed the answer for SU (n). There was a hard way of doing it, using
Gell-Mann f;;;, and d;;;, coefficients. There was also an easy way, where one could
doodle oneself to the answer in a few lines. This is the “birdtracks” method that will
be developed here. It works nicely for SO(n) and Sp(n) as well. Out of curiosity,
I wanted the answer for the remaining five exceptional groups. This engendered
further thought, and that which I learned can be better understood as the answer to
a different question. Suppose someone came into your office and asked, “On planet
Z, mesons consist of quarks and antiquarks, but baryons contain three quarks in
a symmetric color combination. What is the color group?” The answer is neither
trivial nor without some beauty (planet Z quarks can come in 27 colors, and the
color group can be Eg).

Once you know how to answer such group-theoretical questions, you can answer
many others. This monograph tells you how. Like the brain, it is divided into two
halves: the plodding half and the interesting half.

The plodding half describes how group-theoretic calculations are carried out for
unitary, orthogonal, and symplectic groups (chapters 3-15). Except for the “negative
dimensions” of chapter 13 and the “spinsters” of chapter 14, none of that is new, but
the methods are helpful in carrying out daily chores, such as evaluating Quantum
Chromodynamics group-theoretic weights, evaluating lattice gauge theory group
integrals, computing 1 /N corrections, evaluating spinor traces, evaluating casimirs,
implementing evaluation algorithms on computers, and so on.

The interesting half, chapters 16-21, describes the “exceptional magic” (a new
construction of exceptional Lie algebras), the “negative dimensions” (relations be-
tween bosonic and fermionic dimensions). Open problems, links to literature, soft-
ware and other resources, and personal confessions are relegated to the epilogue,
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monograph’s Web page birdtracks.eu. The methods used are applicable to field-
theoretic model building. Regardless of their potential applications, the results are
sufficiently intriguing to justify this entire undertaking. In what follows we shall for-
get about quarks and quantum field theory, and offer instead a somewhat unorthodox
introduction to the theory of Lie algebras. If the style is not Bourbaki [ 29], it is not
so by accident.

There are two complementary approaches to group theory. In the canonical ap-
proach one chooses the basis, or the Clebsch-Gordan coefficients, as simply as
possible. This is the method which Killing [189] and Cartan [43] used to obtain the
complete classification of semisimple Lie algebras, and which has been brought to
perfection by Coxeter [67] and Dynkin [105]. There exist many excellent reviews
of applications of Dynkin diagram methods to physics, such as refs. [ 312, 126].

Inthe tensorial approach pursued here, the bases are arbitrary, and every statement
is invariant under change of basis. Tensor calculus deals directly with the invariant
blocks of the theory and gives the explicit forms of the invariants, Clebsch-Gordan
series, evaluation algorithms for group-theoretic weights, etc.

The canonical approach is often impractical for computational purposes, as a
choice of basis requires a specific coordinatization of the representation space. Usu-
ally, nothing that we want to compute depends on such a coordinatization; physical
predictions are pure scalar numbers (“color singlets”), with all tensorial indices
summed over. However, the canonical approach can be very useful in determining
chains of subgroup embeddings. We refer the reader to refs. [ 312, 126] for such
applications. Here we shall concentrate on tensorial methods, borrowing from Car-
tan and Dynkin only the nomenclature for identifying irreducible representations.
Extensive listings of these are given by McKay and Patera [ 234] and Slansky [312].

To appreciate the sense in which canonical methods are impractical, let us consider
using them to evaluate the group-theoretic factor associated with diagram (1.1)
for the exceptional group Es. This would involve summations over 8 structure
constants. The Cartan-Dynkin construction enables us to construct them explicitly;
an Ej structure constant has about 2483 /6 elements, and the direct evaluation of the
group-theoretic factor for diagram (1.1) is tedious even on a computer. An evaluation
in terms of a canonical basis would be equally tedious for SU(16); however, the
tensorial approach illustrated by the example of section 2.2 yields the answer for all
SU(n) in a few steps.

Simplicity of such calculations is one motivation for formulating a tensorial ap-
proach to exceptional groups. The other is the desire to understand their geometrical
significance. The Killing-Cartan classification is based on a mapping of Lie alge-
bras onto a Diophantine problem on the Cartan root lattice. This yields an exhaustive
classification of simple Lie algebras, but gives no insight into the associated geome-
tries. In the 19th century, the geometries or the invariant theory were the central
question, and Cartan, in his 1894 thesis, made an attempt to identify the primitive
invariants. Most of the entries in his classification were the classical groups SU (n),
SO(n), and Sp(n). Of the five exceptional algebras, Cartan [44] identified G as the
group of octonion isomorphisms and noted already in his thesis that ' has a skew-
symmetric quadratic and a symmetric quartic invariant. Dickson characterized E g
as a 27-dimensional group with a cubic invariant. The fact that the orthogonal, uni-
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tary and symplectic groups were invariance groups of real, complex, and quaternion
norms suggested that the exceptional groups were associated with octonions, but it
took more than 50 years to establish this connection. The remaining four exceptional
Lie algebras emerged as rather complicated constructions from octonions and Jordan
algebras, known as the Freudenthal-Tits construction. A mathematician’s history of
this subject is given in a delightful review by Freudenthal [ 130]. The problem has
been taken up by physicists twice, first by Jordan, von Neumann, and Wigner [ 173],
and then in the 1970s by Glirsey and collaborators [ 149, 151, 152]. Jordan et al.’s
effort was a failed attempt at formulating a new quantum mechanics that would ex-
plain the neutron, discovered in 1932. However, it gave rise to the Jordan algebras,
which became a mathematics field in itself. Giirsey et al. took up the subject again
in the hope of formulating a quantum mechanics of quark confinement; however,
the main applications so far have been in building models of grand unification.

Although beautiful, the Freudenthal-Tits construction is still not practical for the
evaluation of group-theoretic weights. The reason is this: the construction involves
[3 x 3] octonionic matrices with octonion coefficients, and the 248-dimensional
defining space of Ey is written as a direct sum of various subspaces. This is conve-
nient for studying subgroup embeddings [291], but awkward for group-theoretical
computations.

The inspiration for the primitive invariants construction came from the axiomatic
approach of Springer [314, 315] and Brown [34]: one treats the defining representa-
tion as a single vector space, and characterizes the primitive invariants by algebraic
identities. This approach solves the problem of formulating efficient tensorial al-
gorithms for evaluating group-theoretic weights, and it yields some intuition about
the geometrical significance of the exceptional Lie groups. Such intuition might be
of use to quark-model builders. For example, because SU (3) has a cubic invariant
€"*°q,qqe, Quantum Chromodynamics, based on this color group, can accommo-
date 3-quark baryons. Are there any other groups that could accommaodate 3-quark
singlets? As we shall see, G4, Fy, and Eg are some of the groups whose defining
representations possess such invariants.

Beyond its utility as a computational technique, the primitive invariants construc-
tion of exceptional groups yields several unexpected results. First, it generates in a
somewhat magical fashion a triangular array of Lie algebras, depicted in figure 1.1.
This is a classification of Lie algebras different from Cartan’s classification; in this
new classification, all exceptional Lie groups appear in the same series (the bottom
line of figure 1.1). The second unexpected result is that many groups and group
representations are mutually related by interchanges of symmetrizations and anti-
symmetrizations and replacement of the dimension parameter n by —n. | call this
phenomenon “negative dimensions.”

For me, the greatest surprise of all is that in spite of all the magic and the strange
diagrammatic notation, the resulting manuscript is in essence not very different from
Wigner’s [345] 1931 classic. Regardless of whether one is doing atomic, nuclear, or
particle physics, all physical predictions (“spectroscopic levels”) are expressed in
terms of Wigner’s 3n-j coefficients, which can be evaluated by means of recursive
or combinatorial algorithms.

Parenthetically, this book is not a book about diagrammatic methods in group
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Figure 1.1 The “Magic Triangle” for Lie algebras. The “Magic Square” is framed by the
double line. For a discussion, consult chapter 21.

theory. If you master a traditional notation that covers all topics in this book in a
uniform way, more elegantly than birdtracks, more power to you. I would love to
learn it.



GroupTheory  PUP Lucy Day version 8.8, March 2, 2008

Chapter Two

A preview

The theory of Lie groups presented here had mutated greatly throughout its gen-
esis. It arose from concrete calculations motivated by physical problems; but as
it was written, the generalities were collected into introductory chapters, and the
applications receded later and later into the text.

As a result, the first seven chapters are largely a compilation of definitions and
general results that might appear unmotivated on first reading. The reader is advised
to work through the examples, section 2.2 and section 2.3 in this chapter, jJump to
the topic of possible interest (such as the unitary groups, chapter 9, or the Eg family,
chapter 17), and birdtrack if able or backtrack when necessary.

The goal of these notes is to provide the reader with a set of basic group-theoretic
tools. They are not particularly sophisticated, and they rest on a few simple ideas.
The text is long, because various notational conventions, examples, special cases,
and applications have been laid out in detail, but the basic concepts can be stated ina
few lines. We shall briefly state them in this chapter, together with several illustrative
examples. This preview presumes that the reader has considerable prior exposure
to group theory; if a concept is unfamiliar, the reader is referred to the appropriate
section for a detailed discussion.

2.1 BASIC CONCEPTS

A typical quantum theory is constructed from a few building blocks, which we shall

refer to as the defining space V. They form the defining multiplet of the theory —

for example, the “quark wave functions” ¢, . The group-theoretical problem consists

of determining the symmetry group, i.e., the group of all linear transformations
qz/z:Gabe aab:1727"'7n7

which leaves invariant the predictions of the theory. The [n x n] matrices G form the
defining representation (or “rep” for short) of the invariance group G. The conjugate
multiplet g (“antiquarks”) transforms as

qla _ Gabqb )
Combinations of quarks and antiquarks transform as tensors, such as
Py’ =Gap®, a prger?,
G’ dF =G Gy Gy°

(distinction between G,* and G%, as well as other notational details are explained
in section 3.2). Tensor reps are plagued by a proliferation of indices. These indices
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can either be replaced by a few collective indices:

L )

=G qp, (2.1)
or represented diagrammatically:
a —e —f a—e——ef
b—<— G e €=b—¢—<—€—¢€,
c —> >>d ¢ =—>——d

(Diagrammatic notation is explained in section 4.1.) Collective indices are conve-
nient for stating general theorems; diagrammatic notation speeds up explicit calcu-
lations.

A polynomial

H(G,T,....8) =hy, ¢, . s,

is an invariant if (and only if) for any transformation G € G and for any set of
vectors ¢, r, s, . . . (see section 3.4)

H(Gq,Gr,...Gs) = H(q,T,...,s). (2.2)

An invariance group is defined by its primitive invariants, i.e., by a list of the
elementary “singlets” of the theory. For example, the orthogonal group O(n) is
defined as the group of all transformations that leaves the length of a vector invariant
(see chapter 10). Another example is the color SU (3) of QCD that leaves invariant
the mesons (¢q) and the baryons (gqq) (see section 15.2). A complete list of primitive
invariants definesthe invariance group via the invariance conditions ( 2.2); only those
transformations, which respect them, are allowed.

It is not necessary to list explicitly the components of primitive invariant tensors
in order to define them. For example, the O(n) group is defined by the requirement
that it leaves invariant a symmetric and invertible tensor g., = gpa, det(g) # 0.
Such definition is basis independent, while a component definition g11 = 1, g12 =
0, g22 = 1, ... relies onaspecific basis choice. We shall define all simple Lie groups
in this manner, specifying the primitive invariants only by their symmetry and by
the basis-independent algebraic relations that they must satisfy.

These algebraic relations (which I shall call primitiveness conditions) are hard to
describe without first giving some examples. In their essence they are statements of
irreducibility; for example, if the primitive invariant tensors are 6 ¢, hqp. and h%¢,
then hq,.hP¢ must be proportional to 6¢, as otherwise the defining rep would be
reducible. (Reducibility is discussed in section 3.5, section 3.6, and chapter 5.)

The objective of physicists” group-theoretic calculations is a description of the
spectroscopy of a given theory. This entails identifying the levels (irreducible mul-
tiplets), the degeneracy of a given level (dimension of the multiplet) and the level
splittings (eigenvalues of various casimirs). The basic idea that enables us to carry
this program through is extremely simple: a hermitian matrix can be diagonalized.
This fact has many names: Schur’s lemma, Wigner-Eckart theorem, full reducibility
of unitary reps, and so on (see section 3.5 and section 5.3). We exploit it by con-
structing invariant hermitian matrices M from the primitive invariant tensors. The
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M'’s have collective indices (2.1) and act on tensors. Being hermitian, they can be
diagonalized

cmMct=10 0 X\ ’

and their eigenvalues can be used to construct projection operators that reduce mul-
tiparticle states into direct sums of lower-dimensional reps (see section 3.5):

R 0
.0
M-MN1

_ T . . 2
S c : _ L : C. (2.3)

O =

J#i

0

0

An explicit expression for the diagonalizing matrix C' (Clebsch-Gordan coefficients
or clebsches, section 4.2) is unnecessary — it is in fact often more of an impediment
than an aid, as it obscures the combinatorial nature of group-theoretic computations
(see section 4.8).

All that is needed in practice is knowledge of the characteristic equation for the
invariant matrix M (see section 3.5). The characteristic equation is usually a simple
consequence of the algebraic relations satisfied by the primitive invariants, and the
eigenvalues \; are easily determined. The \;” s determine the projection operators
P;, whichinturn contain all relevant spectroscopic information: the rep dimension is
given by tr P;, and the casimirs, 6-5’s, crossing matrices, and recoupling coefficients
(see chapter 5) are traces of various combinations of P;’s. All these numbers are
combinatoric; they can often be interpreted as the number of different colorings of
a graph, the number of singlets, and so on.

The invariance group is determined by considering infinitesimal transformations

Go¥ ~ 68 +iei(T;)" .
The generators 7; are themselves clebsches, elements of the diagonalizing matrix
C' for the tensor product of the defining rep and its conjugate. They project out
the adjoint rep and are constrained to satisfy the invariance conditions (2.2) for

infinitesimal transformations (see section 4.4 and section 4.5):
(T3 b + (T} Py = (TS + ... =0

+...=0.  (24)
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Primitive invariants Invariance group
qq SU(n)
aa SO(n) Sp(n)
qqq Eet.
qaqq E+.

higher order

Figure 2.1 Additional primitive invariants induce chains of invariance subgroups.

As the corresponding projector operators are already known, we have an explicit
construction of the symmetry group (at least infinitesimally — we will not consider
discrete transformations).

If the primitive invariants are bilinear, the above procedure leads to the familiar
tensor reps of classical groups. However, for trilinear or higher invariants the results
are more surprising. In particular, all exceptional Lie groups emerge in a pattern of
solutions which I will refer to as a Magic Triangle. The flow of the argument (see
chapter 16) is schematically indicated in figure 2.1, with the arrows pointing to the
primitive invariants that characterize a particular group. For example, E 7 primitives
are a sesquilinear invariant ¢g, a skew symmetric gp invariant, and a symmetric gqqq
(see chapter 20).

The strategy is to introduce the invariants one by one, and study the way in
which they split up previously irreducible reps. The first invariant might be realiz-
able in many dimensions. When the next invariant is added (section 3.6), the group
of invariance transformations of the first invariant splits into two subsets; those
transformations that preserve the new invariant, and those that do not. Such decom-
positions yield Diophantine conditions on rep dimensions. These conditions are so
constraining that they limit the possibilities to a few that can be easily identified.

To summarize: in the primitive invariants approach, all simple Lie groups, clas-
sical as well as exceptional, are constructed by (see chapter 21)

1. defining a symmetry group by specifying a list of primitive invariants;

2. using primitiveness and invariance conditions to obtain algebraic relations
between primitive invariants;

3. constructing invariant matrices acting on tensor product spaces;

4. constructing projection operators for reduced rep from characteristic equa-
tions for invariant matrices.
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Once the projection operators are known, all interesting spectroscopic numbers can
be evaluated.

The foregoing run through the basic concepts was inevitably obscure. Perhaps
working through the next two examples will make things clearer. The first example
illustrates computations with classical groups. The second example is more inter-
esting; it is a sketch of construction of irreducible reps of F.

2.2 FIRST EXAMPLE: SU(N)

How do we describe the invariance group that preserves the norm of a complex
vector? The list of primitives consists of a single primitive invariant,

n

m(p,q) = 0§p°¢a = Y _(Pa)"a -

a=1
The Kronecker 67 is the only primitive invariant tensor. We can immediately write
down the two invariant matrices on the tensor product of the defining space and its
conjugate,

d c
identity : 154 = 605 =
' a——>Db

d c
trace : T9¢ = 6208 = } C .
' a b

The characteristic equation for 7" written out in the matrix, tensor, and birdtrack
notations is
T?=nT
T3 1755 =06561865 = nTgs

2= C

Here we have used 0¢ = n, the dimension of the defining vector space. The roots
are Ay = 0, A2 = n, and the corresponding projection operatorsare

SU (n) adjoint rep: P, = I=t_3_17
—_——
- _1
> - -2 C 25
U(n) singlet: p, = T0l_1lp_ %} C

Now we can evaluate any number associated with the SU (n) adjoint rep, such as
its dimension and various casimirs.

The dimensions of the two reps are computed by tracing the corresponding pro-
jection operators (see section 3.5):

1 1
U(n) adjoint: d; =tr Py = :Q:—— = 0p00 — =85y
SU(n) adjoint: dy =tr P, @ - b0a — —0a0

=n?-1

. 1
singlet: do=tr Py = —@ =
n
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To evaluate casimirs, we need to fix the overall normalization of the generators T';
of SU(n). Our convention is to take

5ij Ztl"T%Tj :407.

The value of the quadratic casimir for the defining rep is computed by substituting
the adjoint projection operator:

SU(n): Cpét = (TiT))! _Q_:_@__l_(_

:n2—1 :”2_1517.

(2.6)

In order to evaluate the quadratic casimir for the adjoint rep, we need to replace the
structure constants C;;, by their Lie algebra definition (see section 4.5)

T,T; — TyT,=iCi;¢Ty

[- X - Y

Tracing with T}, we can express C;;,, in terms of the defining rep traces:
ZCz]k =tr TT Tk — tr T ’I”I'}.C

0o

The adjoint quadratic casimir C;,,,,,C™™ is now evaluated by firsteliminating C; 1’
in favor of the defining rep:

n
m

The remaining C;;;, can be unwound by the Lie algebra commutator:

0.0 o

We have already evaluated the quadratic casimir (2.6) in the first term. The second
term we evaluate by substituting the adjoint projection operator

SO DO

(LT Te) = (T)g (Pu)g, §(Ty)d = (T)a(Th)e — %(Ti)Z(Tj)g :

a c

The (T;)2(T})¢ term vanishes by the tracelessness of 7;’s. This is a consequence of
the orthonormality of the two projection operators P ; and P in (2.5) (see (3.50)):
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Combining the above expressions we finally obtain

2 -1 1
CAzz(” +—):2n.

n n
The problem (1.1) that started all this is evaluated the same way. First we relate the
adjoint quartic casimir to the defining casimirs:

P21
o000
L0 R0

on. The result is

SUm) - :n{ﬁ+ﬁ}+2{> <++><}.

The diagram (1.1) is now reexpressed in terms of the defining rep casimirs:

0000
sf (Yt O v

The first two terms are evaluated by inserting the adjoint rep projection operators:

N N =g S G e
(23 (1) <)

3
_ 2
={n _3+ﬁ —_—,

and the remaining terms have already been evaluated. Collecting everything together,
we finally obtain

SU(n) : @ =2n%(n? +12)
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This example was unavoidably lengthy; the main point is that the evaluation is
performed by a substitution algorithm and is easily automated. Any graph, no matter
how complicated, is eventually reduced to a polynomial in traces of § ¢ = n, i.e,
the dimension of the defining rep.

2.3 SECOND EXAMPLE: Eg FAMILY

What invariance group preserves norms of complex vectors, as well as a symmetric
cubic invariant,

D(p,q,r) = d*paqyre = D(q,p,7) = D(p,7,q) ?
We analyze this case following the steps of the summary of section 2.1:

i) Primitive invariant tensors
a a

6 =a—>—b, dupe = /i\ ,d™ = (dgpe)* = A\

b c b c

i) Primitiveness. d,.d®/® must be proportional to ¢, the only primitive 2-index
tensor. We use this to fix the overall normalization of d ,;..’s:

O

iii) Invariant hermitian matrices. We shall construct here the adjoint rep projection
operator on the tensor product space of the defining rep and its conjugate. All
invariant matrices on this space are

d—e—c d c d c
9105 = DS QUL TR
a=—>— b a b a b

They are hermitian in the sense of being invariant under complex conjugation and
transposition of indices (see (3.21)). The crucial step in constructing this basis is the
primitiveness assumption: 4-leg diagrams containing loops are not primitive (see
section 3.3).

The adjoint rep is always contained in the decomposition of V@ V — V@V into
(inreducible reps, so the adjoint projection operator must be expressible in terms of
the 4-index invariant tensors listed above:

(Tl)g(T) A(é“&b + Béb 6d + Cdadedb

> =4 { +B ) C+0:}<}

iv) Invariance. The cubic invariant tensor satisfies (2.4)

A A A -
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Contracting with 4%, we obtain

Loy

Contracting nextwith (7;)%, we get an invariance condition on the adjoint projection

Operator,
Ly 2_«@_ —0.

Substituting the adjoint projection operator yields the first relation between the
coefficients in its expansion:

Oz(n+B+O)—<—+2{_@+B-«O—«+C.@}

42
O=B+O+n_?|: .

v) The projection operators should be orthonormal, P ,P, = P,0,.. The adjoint
projection operator is orthogonal to (2.5), the singlet projection operator P 5. This
yields the second relation on the coefficients:

0=P2P4

o:%) O—Czl—i—nB—kC.

Finally, the overall normalization factor A is fixed by P 4P 4 = P 4:

{:{){:A{Ho_g}{.

Combining the above three relations, we obtain the adjoint projection operator for
the invariance group of a symmetric cubic invariant:

>{:9—|2—n{3:+> C—<3+n>:}<}- 2.7)

The corresponding characteristic equation, mentioned in the point iv) of the sum-
mary of section 2.1, is given in (18.10).
The dimension of the adjoint rep is obtained by tracing the projection operator:

N:(S”:Q:@:TLA(H—FB—FC):%

This Diophantine condition is satisfied by a small family of invariance groups,
discussed in chapter 18. The most interesting member of this family is the exceptional
Lie group Eg, withn = 27and N = 78.

The solution to problem (1.1) requires further computation, but for exceptional
Lie groups the answer, given in table 7.4, turns out to be surprisingly simple. The
part of the 4-loop that cannot be simplified by Lie algebra manipulations vanishes
identically for all exceptional Lie groups (chapter 17.
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Chapter Three

Invariants and reducibility

Basic group-theoretic notions are introduced: groups, invariants, tensors, the dia-
grammatic notation for invariant tensors.

The key results are the construction of projection operators from invariant matri-
ces, the Clebsch-Gordan coefficients rep of projection operators (4.18), the invari-
ance conditions (4.35) and the Lie algebra relations (4.47).

The basic idea is simple: a hermitian matrix can be diagonalized. If this matrix
is an invariant matrix, it decomposes the reps of the group into direct sums of
lower-dimensional reps. Most of computations to follow implement the spectral
decomposition

MZ)\1P1—|—/\2P2+"'+/\TPT7

which associates with each distinct root \; of invariant matrix M a projection op-
erator (3.48):

M-\ 1
P, = [[——L.
LU= A
J#i

The exposition given here in sections. 3.5-3.6 is taken from refs. [73, 74]. Who
wrote this down first | do not know, but I like Harter’s exposition [ 155, 156, 157]
best.

What follows is a bit dry, so we start with a motivational quote from Hermann
Weyl on the “so-called first main theorem of invariant theory™:

“All invariantsare expressiblein terms of a finite number among them. We cannot
claim its validity for every group G; rather, it will be our chief task to investigate for
each particular group whether a finite integrity basis exists or not; the answer, to be
sure, will turn out affirmative in the most important cases.”

3.1 PRELIMINARIES

In this section we define basic building blocks of the theory to be developed here:
groups, vector spaces, algebras, etc. This material is covered in any introduction
to linear algebra [135, 211, 253] or group theory [324, 153]. Most of the material
reviewed here is probably known to the reader and can be profitably skipped on the
firstreading. Nevertheless, it seems that a refresher is needed here, as an expert (more
so than a novice to group theory) tends to find the first exposure to the diagrammatic
rewriting of elementary properties of linear vector spaces (chapter 4) hard to digest.
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3.1.1 Groups
Definition. A set of elements g € G forms a group with respect to multiplication
gxg—gif

(a) the set is closed with respect to multiplication; for any two elements a, b € G,
the product ab € G;

(b) multiplication is associative
(ab)c = a(be)
for any three elements a, b, ¢ € G;
(c) there exists an identity element e € G such that
eg=ge foranygeg;

(d) forany g € G there exists an inverse g —! such that

g lg=g9 " =e.

If the group is finite, the number of elements is called the order of the group and
denoted |G|. If the multiplication ab = ba is commutative for all a, b € G, the group
is abelian.

Definition. A subgroup 1 C G is a subset of G that forms a group under multipli-
cation. e is always a subgroup; so is G itself.

3.1.2 Vector spaces

Definition. A set V' of elements x,y, z, . . . is called a vector (or linear) space over
a field F if

(a) vector addition “+” is defined in V' such that V' is an abelian group under
addition, with identity element O;

(b) the set is closed with respect to scalar multiplication and vector addition
a(x +y)=ax+ay, a,belF, xyeV
(a+b)x=ax+ bx
a(bx) = (ab)x

1x=x, 0x=0.

Here the field IF is either R, the field of reals numbers, or C, the field of complex
numbers. Given a subset V; C V/, the set of all linear combinations of elements of
Vb, or the span of 1, is also a vector space.

Definition. A basis {e!,---,e"} is any linearly independent subset of V' whose
span is V. n, the number of basis elements, is called the dimension of the vector
space V.
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In calculations to be undertaken a vector x € V' is often specified by the n-tuple
(21, -, xy) INTF", its coordinates x = >_ e%x, in a given basis. We will rarely,
if ever, actually fix an explicit basis {e!,---,e"}, but thinking this way makes it
often easier to manipulate tensorial objects.

Repeated index summation. Throughout this text, the repeated pairs of upper/lower
indices are always summed over

G, lr, = Z G.lxy, (3.1)
b=1
unless explicitly stated otherwise.

Let GL(n,F) be the group of general linear transformations,
GL(n,F)={G:F" - F"| det(G) # 0} . (3.2)

Under GL(n,T) abasis set of V' is mapped into another basis set by multiplication
with a [n x n] matrix G with entries in IF,

e/ a _ eb(Gfl)ba .
As the vector x is what it is, regardless of a particular choice of basis, under this
transformation its coordinates must transform as

z =Gl .

Definition. We shall refer to the set of [n x n] matrices G as a standard rep of
GL(n,TF), and the space of all n-tuples (z1, z2, ..., z,), z; € F on which these
matrices act as the standard representation space V.

Under a general linear transformation G € GL(n,F), the row of basis vectors
transforms by right multiplication as e’ = e G~ 1, and the column of x,’s trans-
forms by left multiplication as z/ = Gx. Under left multiplication the column
(row transposed) of basis vectors e’ transforms as e’* = GTe?, where the dual rep
Gt = (G~1)* is the transpose of the inverse of G. This observation motivates in-
troduction of a dual representation space V, the space on which G L(n, F) acts via
the dual rep G*.

Definition. If V is a vector representation space, then the dual space V is the set of
all linear forms on V' over the field F.

If {e!,---,e"} is a basis of V/, then V' is spanned by the dual basis {fi,---,f,},
the set of n linear forms £, such that

f,(e’) =d",
where 4° is the Kronecker symbol, §° = 1 if a = b, and zero otherwise. The

components of dual representation space vectors will here be distinguished by upper
indices

(yl, TR Sy . (3.3)
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They transform under GL(n, F) as
Y =GNy (34)
For G L(n, IF) no complex conjugation is implied by the T notation; that interpretation

applies only to unitary subgroups of GL(n, C). G can be distinguished from G T by
meticulously keeping track of the relative ordering of the indices,

G - G.b, (G -G, (3.5)

3.1.3 Algebra

Definition. A set of  elements t, of a vector space 7 forms analgebra if, in addition
to the vector addition and scalar multiplication,

(a) the set is closed with respect to multiplication 7 - 7 — 7, so that for any two
elements t,, tg € 7, the product t,, - t3 also belongs to 7°:

r—1
to tsg = Tag'ty, Tas? €C; (3.6)
v=0

(b) the multiplication operation is distributive:
(ta +t5) - ty=ta -ty +t5-t,
to (tg+ty) =t tg+ta t,.

The set of numbers 7,57 are called the structure constantsof the algebra. They form
a matrix rep of the algebra,

(ta)ﬂ’y = 7-0&57 ’ (37)
whose dimension is the dimension of the algebra itself.

Depending on what further assumptions one makes on the multiplication, one
obtains different types of algebras. For example, if the multiplication is associative
(to - tg) -ty =ta - (tg-ty),

the algebra is associative. Typical examples of products are the matrix product
(ta - tp)s = (ta)ate);, ta€V @V, (3.8)
and the Lie product
(ta - t3)s = (tada(ts)s — (ta)olts)i, ta€V V. (3.9)

As a plethora of vector spaces, indices and dual spaces looms large in our imme-
diate future, it pays to streamline the notation now, by singling out one vector space
as “defining” and indicating the dual vector space by raised indices.

The next two sections introduce the three key notions in our construction of invar-
ince groups: defining rep, section 3.2 (see also comments on page 23); invariants,
section 3.4; and primitiveness assumption, page 21. Chapter 4 introduces diagram-
matic notation, the computational tool essential to understanding all computations
to come. As these concepts can be understood only in relation to one another, not
singly, and an exposition of necessity progresses linearly, the reader is asked to be
patient, in the hope that the questions that naturally arise upon first reading will be
addressed in due course.
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3.2 DEFINING SPACE, TENSORS, REPS

Definition. Inwhat follows V' will always denote the defining n-dimensional com-
plex vector representation space, that is to say the initial, “elementary multiplet”
space within which we commence our deliberations. Along with the defining vector
representation space V' comes the dual n-dimensional vector representation space
V. We shall denote the corresponding element of 1 by raising the index, as in (3.3),
so the components of defining space vectors, resp. dual vectors, are distinguished
by lower, resp. upper indices:

r=(x1,22,...,Tn), XEV
z=(z',2%...,2"), =xcV. (3.10)

Definition. Let G be a group of transformations acting linearly on V', with the action
of a group element g € G on a vector 2z € V' given by an [n xn] matrix G
! =G.br,  a,b=1,2,...,n. (3.11)
We shall refer to G’ as the defining rep of the group G. The action of g € Gona
vector g € V is given by the dual rep [ x n] matrix G'1:
' = 2%(G1),* = G4l (3.12)
In the applications considered here, the group G will almost always be assumed

to be a subgroup of the unitary group, in which case G ! = G, and T indicates
hermitian conjugation:

(GNa" = (Gy")" =G . (3.13)
Definition. A tensor 2 € VP ® V4 transforms under the action of g € G as
= Gy e, (3.14)

where the V? @ V4 tensor rep of g € G is defined by the group acting on all indices
of z.

a102..-Qp d,...d — d dol d
Gb1...bq el N :Galc1Ga202 "'Gapchbq a ...Gb2 2 Gb1 1, (315)

) Cp...C2C1

Tensors can be combined into other tensors by

(a) addition:
Zg0 = a4 By, e fEC, (3.16)

(b) product:
2ot = al g, (3.17)

(c) contraction: Setting an upper and a lower index equal and summing over all of
its values yields a tensor z € VP~ @ V4~1 without these indices:

gl =ally, 2 =alyG, (3.18)
A tensor z € VP ® V4 transforms linearly under the action of g, so it can be

considered a vector in the d = n?*+?-dimensional vector space V = V? @ V7. We
can replace the array of its indices by one collective index:

Ta =y g (3.19)
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One could be more explicit and give a table like
11...1 21...1
Ty =@, T2 =7, xg = (3.20)

but that is unnecessary, as we shall use the compact index notation only as a short-
hand.

Definition. Hermitian conjugation is effected by complex conjugation and index
transposition:

(h")ede = (h5a*)" . (3.21)

cde —
Complex conjugation interchanges upper and lower indices, as in (3.10); transposi-
tion reverses their order. A matrix is hermitian if its elements satisfy
(Mhg = M. (3.22)

For a hermitian matrix there is no need to keep track of the relative ordering of
indices, as M® = (MT),% = M9,

Definition. The tensor dual to =, defined by (3.19) has form
% = glebr (3.23)

q---a2a1

Combined, the above definitions lead to the hermitian conjugation rule for collective
indices: a collective index is raised or lowered by interchanging the upper and lower
indices and reversing their order:

_ Jaras...a4 o ) bp.. b1
a—{ blbp} - _{aq...agal}' (324)
This transposition convention will be motivated further by the diagrammatic rules

of section 4.1.

The tensor rep (3.15) can be treated as a [d x d] matrix
G = GH ey el (3.25)
and the tensor transformation (3.14) takes the usual matrix form
zl, =G 5. (3.26)

[e3

3.3 INVARIANTS

Definition. The vector ¢ € V' is an invariant vector if for any transformationg € G

q=Gq. (3.27)
Definition. A tensor z € V? ® V4 is an invariant tensor if forany g € G
Ty 5 = G Gy Gy TGy (3.28)
We can state this more compactly by using the notation of (3.25)
To = Golrs. (3.29)

a1az...ap

Here we treatthe tensor =, " as a vector in [dxd]-dimensional space, d = npta,
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If a bilinear form M(z, y) = 2 M, y, is invariant for all g € G, the matrix
M, = G, °Gb M. ? (3.30)
is an invariant matrix. Multiplying with G, and using the unitary condition (3.13),
we find that the invariant matrices commute with all transformations g € G:
[G,M] =0. (3.31)
If we wish to treat a tensor with equal number of upper and lower indices as a
matrix M : VP @ V4 — VP ® V9,

MoP = My e, deed (3.32)
then the invariance condition (3.29) will take the commutator form (3.31). Our
convention of separating the two sets of indices by a comma, and reversing the
order of the indices to the right of the comma, is motivated by the diagrammatic
notation introduced below (see (4.6)).

Definition. We shall refer to an invariant relation between p vectors in V' and ¢
vectors in V, which can be written as a homogeneous polynomial in terms of vector
components, such as

H(z,y,%,7,5) = h® gexpyasriz, (3.33)
as an invariant in V¢ ® VP (repeated indices, as always, summed over). In this
example, the coefficients h%° 4. are components of invariant tensor h € V2 ® V2,

obeying the invariance condition (3.28).
Diagrammatic representation of tensors, such as

h 4o = (3.34)

a b c d e
makes it easier to distinguish different types of invariant tensors. We shall explain
in great detail our conventions for drawing tensors in section 4.1; sketching a few
simple examples should suffice for the time being.

The standard example of a defining vector space is our 3-dimensional Euclidean
space: V = V is the space of all 3-component real vectors (n = 3), and exam-
ples of invariants are the length L(z,2) = d;j2;2; and the volume V(z,y, z) =
€k LY 2,. We draw the corresponding invariant tensors as

Oij =1 i, e = A\ . (3.35)

i j k

Definition. A composed invariant tensor can be written as a product and/or contrac-
tion of invariant tensors.

Examples of composed invariant tensors are
i m n

5ij€klm = | A\ ) 6ijrr157nn€nkl = M . (336)

i k1 m i j kI
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The first example corresponds to a product of the two invariants L(x,y)V (z,r, s).
The second involves an index contraction; we canwrite thisas V(z, y, -£)V (z, 1, s).

In order to proceed, we need to distinguish the “primitive” invariant tensors from
the infinity of composed invariants. We begin by defining a finite basis for invariant
tensors in VP @ V4

Definition. A tree invariant can be represented diagrammatically as a product of
invariant tensors involving no loops of index contractions. We shall denote by 7' =
{to,t1...t,—1} a (maximal) set of = linearly independent tree invariants t, €
VP ® V4, As any linear combination of t,, can serve as a basis, we clearly have a
great deal of freedom in making informed choices for the basis tensors.

Example: Tensors (3.36) are tree invariants. The tensor
i

(3.37)

hijkl = €ims€inmEkrn€lsr =

with intermediate indices m,n,r, s summed over, is not a tree invariant, as it
involves a loop.

Definition. An invariant tensor is called a primitive invariant tensor if it cannot
be expressed as a linear combination of tree invariants composed from lower-rank
primitive invariant tensors. Let P = {p1, p2, . . . px } be the set of all primitives.
For example, the Kronecker delta and the Levi-Civita tensor ( 3.35) are the primi-
tive invariant tensors of our 3-dimensional space. The loop contraction ( 3.37) is not
a primitive, because by the Levi-Civita completeness relation (6.28) it reduces to a
sum of tree contractions:
i | )
i | i
= ) C +. = 0ij0kt + 010k (3.38)
_ J k j—k
] k

(The Levi-Civita tensor is discussed in section 6.3.)

Primitiveness assumption. Any invarianttensor h € V? @ V4 can be expressed
as a linear sum over the tree invariants 7’ C V4 @ V?:

h=> h. (3.39)
a€eT

In contradistinction to arbitrary composite invariant tensors, the number of tree
invariants for a fixed number of external indices is finite. For example, given bilinear
and trilinear primitives P = {¢,;, fi;x }, any invariant tensor h € V'? (here denoted
by a blob) must be expressible as

—Q— — A . (p=2) (3.40)
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MTA

:C —|—D) C
+E><+F>—<+GI+H%\
:I)/l\jLJ\J\JF...’ (p=5) - (3.41)

3.3.1 Algebraof invariants

Any invariant tensor of matrix form (3.32)
Maﬁ — Ml‘)lll.‘.li;aq dp...d1

Y Cq...C2C1
that maps V4 ® VP — V4 ® VP can be expanded in the basis (3.39). In this case the
basis tensors t,, are themselves matrices in V¢ @ VP — V9 ® VP, and the matrix
product of two basis elements is also an element of V¢ @ V? — V4 @ VP and can
be expanded in an r element basis:

tats = Y (Ta)s"ty . (3.42)
yeT

As the number of tree invariants composed from the primitives is finite, under matrix
multiplication the bases t, form a finite r-dimensional algebra, with the coefficients
(1a)g” giving their multiplication table. As in (3.7), the structure constants (7,)g"
form a [rxr]-dimensional matrix rep of t , acting on the vector (e, t1,to, - t,_1).
Given a basis, we can evaluate the matrices eg?, (11)g", (72)g7, - (7r—1)g"” and
their eigenvalues. For at least one of these matrices all eigenvalues will be distinct
(or we have failed to choose a good basis). The projection operator technique of
section 3.5 will enable us to exploit this fact to decompose the V¢ ® V7 space into
r irreducible subspaces.

This can be said in another way; the choice of basis {e, t1,to---t,_1} is arbi-
trary, the only requirement being that the basis elements are linearly independent.
Finding a (7., ) g” with all eigenvalues distinct is all we need to construct an orthog-
onal basis {Pg, Py, Ps,---P,_1}, where the basis matrices P; are the projection
operators, to be constructed below in section 3.5. For an application of this algebra,
see section 9.11.

3.4 INVARIANCE GROUPS

So far we have defined invariant tensors as the tensors invariant under transforma-
tions of a given group. Now we proceed in reverse: given a set of tensors, what is
the group of transformations that leaves them invariant?
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Given a full set of primitives, (3.33) P = {p1, p2, . . ., pr }, meaning that no other
primitives exist, we wish to determine all possible transformations that preserve this
given set of invariant relations.

Definition. An invariancegroup g is the set of all linear transformations ( 3.28) that
preserve the primitive invariant relations (and, by extension, all invariant relations)

p1 (CE, g) =D1 (GirngT)
pa(z,y,2,...)=p2(Ga, Gy, Gz ...), ... (3.43)

Unitarity (3.13) guarantees that all contractions of primitive invariant tensors, and
hence all composed tensors h € H, are also invariant under action of G. As we
assume unitary g, it follows from (3.13) that the list of primitives must always
include the Kronecker delta.

Example 1. If p“q, is the only invariant of G
P, = p"(GTG) qe = p"a (3.44)

then G is the full unitary group U (n) (invariance group of the complex norm |z| 2 =
xPx,05), whose elements satisfy

GG =1. (3.45)

Example 2. If we wish the z-direction to be invariant in our 3-dimensional space,
g = (0,0,1) is an invariant vector (3.27), and the invariance group is O(2), the
group of all rotations in the x-y plane.

Which rep is* defining” ?

1. The defining space V' need not carry the lowest-dimensional rep of G; it is
merely the space in terms of which we chose to define the primitive invariants.

2. We shall always assume that the Kronecker delta 6° is one of the primitive
invariants, i.e, that G is a unitary group whose elements satisfy (3.45). This
restriction to unitary transformations is not essential, but it simplifies proofs of
full reducibility. The results, however, apply as well to the finite-dimensional
reps of noncompact groups, such as the Lorentz group SO(3, 1).
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3.5 PROJECTION OPERATORS

For M, a hermitian matrix, there exists a diagonalizing unitary matrix C' such that

0 0
X2 0 ... 0
CMC' = 0 0 A 0 . (3.46)
0 X
; . X5 ...

Here \; # \; are the r distinct roots of the minimal characteristic polynomial
[T —x1)=o0 (3.47)
i=1

(the characteristic equations will be discussed in section 6.6).

In the matrix C'(M — X\»1)CT the eigenvalues corresponding to A, are replaced
by zeroes:

A1 — A2

A1 — A2
A1 — Ao

A3 — Ag
A3 — Az

and so on, so the product over all factors (M — A21)(IM — A31) ..., with exception
of the (M — A1) factor, has nonzero entries only in the subspace associated with
Ai:

100
010 0
00 1
clI™M -0t =] =) 0
J#1 i#1 0 0
0

In this way, we can associate with each distinct root \; a projection operator P,

M- \1
M-t (3.48)

P'L: )
N\

i
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which acts as identity on the sth subspace, and zero elsewhere. For example, the
projection operator onto the A subspace is

C. (3.49)
0
The matrices P; are orthogonal
P;P; =6;;P;, (nosumon j), (3.50)
and satisfy the completenessrelation
> Pi=1. (3.51)

i=1
As tr(CP;CT) = tr P;, the dimension of the ith subspace is given by

It follows from the characteristic equation (3.47) and the form of the projection
operator (3.48) that \; is the eigenvalue of M on P; subspace:

MP, = \,P; (nosumoni). (3.53)
Hence, any matrix polynomial f (M) takes the scalar value f(\;) on the P; subspace
FIM)P; = f(\)P; . (3.54)

This, of course, is the reason why one wants to work with irreducible reps: they
reduce matrices and “operators” to pure numbers.

3.6 SPECTRAL DECOMPOSITION

Suppose there exist several linearly independent invariant [dx d] hermitian matrices
M, Mg, ..., and that we have used M, to decompose the d-dimensional vector
space V = ¥ & V,. Can My, Ms,... be used to further decompose V;? This
is a standard problem of quantum mechanics (simultaneous observables), and the
answer is that further decomposition is possible if, and only if, the invariant matrices
commute:

My, M) =0, (3.55)

or, equivalently, if projection operators P ; constructed from M, commute with
projection operators P; constructed from M ¢,

PP, = P,P,. (3.56)
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Usually the simplest choices of independent invariant matrices do not commute.
In that case, the projection operators P ; constructed from M can be used to project
commuting pieces of M:

M) = P,M,P;,  (nosumoni).

That Mgi) commutes with M; follows from the orthogonality of P ;:

MY M Z)\ MY P,]=0. (3.57)

Now the characteristic equation for M;) (if nontrivial) can be used to decompose
V; subspace.

An invariant matrix M induces a decomposition only if its diagonalized form
(3.46) has more than one distinct eigenvalue; otherwise it is proportional to the unit
matrix and commutes trivially with all group elements. A rep is said to be irreducible
if all invariant matrices that can be constructed are proportional to the unit matrix.

In particular, the primitiveness relation (3.40) is a statement that the defining rep
is assumed irreducible.

An invariant matrix M. commutes with group transformations [G, M] = 0, see
(3.31). Projection operators (3.48) constructed from M are polynomials in M, so
they also commute with all g € G:

[G,P;]=0 (3.58)

(remember that P; are also invariant [d x d] matrices). Hence, a [d x d] matrix rep
can be written as a direct sum of [d; x d;] matrix reps:

G=1G1=Y P,GP; =) P,GP, =) G;. (3.59)
i,j i i
In the diagonalized rep (3.49), the matrix G has a block diagonal form:
Gy 0 0
cGeh=| 0 G 0 G=3"C'GiC;. (3.60)
0 o -

The rep G; acts only on the d;-dimensional subspace V; consisting of vectors P;q,
q € V. Inthisway an invariant [dxd] hermitian matrix M with r distinct eigenvalues
induces a decomposition of a d-dimensional vector space V into a direct sum of d;-
dimensional vector subspaces V;:

VE viewe.. .oV,. (3.61)

For a discussion of recursive reduction, consult appendix A. The theory of class
algebras [155, 156, 157] offers a more elegant and systematic way of constructing
the maximal set of commuting invariant matrices M ; than the sketch offered in this
section.
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Diagrammatic notation

Some aspects of the representation theory of Lie groups are the subject of this mono-
graph. However, it is not written in the conventional tensor notation but instead in
terms of an equivalent diagrammatic notation. We shall refer to this style of carrying
out group-theoretic calculations as birdtracks (and so do reputable journals [51]).
The advantage of diagrammatic notation will become self-evident, | hope. Two of
the principal benefits are that it eliminates “dummy indices,” and that it does not
force group-theoretic expressions into the 1-dimensional tensor format (both being
means whereby identical tensor expressions can be made to look totally different).
In contradistinction to some of the existing literature in this manuscript | strive to
keep the diagrammatic notation as simple and elegant as possible.

4.1 BIRDTRACKS

We shall often find it convenient to represent agglomerations of invariant tensors
by birdtracks, a group-theoretical version of Feynman diagrams. Tensors will be
represented by vertices and contractions by propagators.

Diagrammatic notation has several advantages over the tensor notation. Diagrams
do not require dummy indices, so explicit labeling of such indices is unnecessary.
More to the point, for a human eye it is easier to identify topologically identical dia-
grams than to recognize equivalence between the corresponding tensor expressions.

If readers find birdtrack notation abhorrent, they can surely derive all results of
this monograph in more conventional algebraic notations. To give them a sense of
how that goes, we have covered our tracks by algebra in the derivation of the £ ;
family, chapter 20, where not a single birdtrack is drawn. It it is like speaking Italian
without moving hands, if you are into that kind of thing.

In the birdtrack notation, the Kronecker delta is a propagator:

5 =b —e— a. 4.1)
For a real defining space there is no distinction between V and V/, or up and down
indices, and the lines do not carry arrows.

Any invariant tensor can be drawn as a generalized vertex:

d ——
b e ——

Xo =X =a51 x |. 4.2)
b ——

C =—>—
Whether the vertex is drawn as a box or a circle or a dot is a matter of taste.

The orientation of propagators and vertices in the plane of the drawing is likewise
irrelevant. The only rules are as follows:




GroupTheory  PUP Lucy Day version 8.8, March 2, 2008

28 CHAPTER 4

1. Arrows point away from the upper indices and toward the lower indices; the
line flow is “downward,” from upper to lower indices:

a d
hed — }\C{ . (4.3)
c

b

2. Diagrammatic notation must indicate which in (out) arrow corresponds to
the first upper (lower) index of the tensor (unless the tensor is cyclically
symmetric);

Here the leftmost
index is the first index

abed = f%\ . (4.4)

a b c d e

3. The indices are read in the counterclockwise order around the vertex:

N—
b
b o X
X, =\ d=—] . (4.5)
e
Order of reading

the indices

(The upper and the lower indices are read separately in the counterclockwise
order; their relative ordering does not matter.)

In the examples of this section we index the external lines for the reader’s conve-
nience, but indices can always be omitted. An internal line implies a summation over
corresponding indices, and for external lines the equivalent points on each diagram
represent the same index in all terms of a diagrammatic equation.

Hermitian conjugation (3.21) does two things:

1. It exchanges the upper and the lower indices, i.e., it reverses the directions of
the arrows.

2. It reverses the order of the indices, i.e., it transposes a diagram into its mirror
image. For example, X T, the tensor conjugate to (4.5), is drawn as

—— d
——

X = Xce*ll)ia = x+ —— %7 (46)
—>—C

and a contraction of tensors X T and Y is drawn as

XY = Xt Yy p = X — Y | @)

..a2a1
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In sections. 3.1-3.2 and here we define the hermitian conjugation and (3.32) matrices
M: VP V?— VP ®V7inthe multi-index notation

b, —— —
b id
a:—(—: M —(—: C: (48)
8, =>— —>—C,

in such a way that the matrix multiplication

V) V)

(4.9)

= M 55 N 5= =3 MN
H H

HN N
>

and the trace of a matrix
c—

A%

can be drawn in the plane. Notation in which all internal lines are maximally crossed
at each multiplication [318] is equally correct, but less pleasing to the eye.

4.2 CLEBSCH-GORDAN COEFFICIENTS

Consider the product

—_

1 C (4.11)

of the two terms in the diagonal representation of a projection operator ( 3.49). This

matrix has nonzero entries only in the d 5 rows of subspace V. We collect them in

a[dy x d] rectangular matrix (C))¢, o =1,2,...d, 0 = 1,2,...dy:

(Ca)i - (O

C\ = . dy - (4.12)
(CN)4,

d

The index avin (C'y )¢ stands for all tensor indices associated with the d = n?*+4-
dimensional tensor space V@V 4. In the birdtrack notation these indices are explicit:

+b
Ot =T (4.13)
U’th...azlh HE .
_)_qq




GroupTheory  PUP Lucy Day version 8.8, March 2, 2008

30 CHAPTER 4

Such rectangular arrays are called Clebsch-Gordan coefficients (hereafter referred
to as clebsches for short). They are explicit mappings V' — V. The conjugate
mapping V, — V' is provided by the product

(4.14)

c.dy:
dx
b —e—f
A\Q1G2...04 o b2 : e}
oy, 7= e (4.15)
. ——
8 —>

The two rectangular Clebsch-Gordan matrices C* and C, are related by hermitian
conjugation.

The tensors, which we have considered in section 3.10, transform as tensor prod-
ucts of the defining rep (3.14). In general, tensors transform as tensor products of
various reps, with indices running over the corresponding rep dimensions:

a; = 1,2,...,d1
ag = 1,2,...,d2
wgriiodrta where (4.16)
Clp+q = 1723---7dp+q-
The action of the transformation ¢ on the index a, is given by the [d; x dj] matrix
rep Gy.

Clebsches are notoriously index overpopulated, as they require a rep label and
a tensor index for each rep in the tensor product. Diagrammatic notation alleviates
this index plague in either of two ways:

1. One can indicate a rep label on each line:

ah_)‘(_

Contv 07 = a,Let T a. (4.17)
a, Yy




GroupTheory  PUP Lucy Day version 8.8, March 2, 2008

DIAGRAMMATIC NOTATION 31

(Anindex, if written, is written at the end of a line; a rep label is written above
the line.)

2. One can draw the propagators (Kronecker deltas) for different reps with dif-
ferent kinds of lines. For example, we shall usually draw the adjoint rep with
a thin line.

By the definition of clebsches (3.49), the A rep projection operator can be written
out in terms of Clebsch-Gordan matrices C*Cly:

C*C\=P,, (nosumonsi)
A dy...d dy  dy.d
(O )le.ljj?bq o 3 * (CA)OH cp.?.@cll = (PA)le.uj.qu p’ cp.?.@cll (418)
—— N < < <
: — o= . | R
—_— > > >

A specific choice of clebsches is quite arbitrary. All relevant properties of projec-
tion operators (orthogonality, completeness, dimensionality) are independent of the
explicit form of the diagonalization transformation C'. Any set of C' is acceptable
as long as it satisfies the orthogonality and completeness conditions. From (4.11)
and (4.14) it follows that C'y are orthonormal:

CLCHP =341,
(CN)ps iy " (CF) oty s @ = 8508
A < W A u
K ; e L (4.19)

Here 1 is the [d) x dy] unit matrix, and C'\’s are multiplied as [d x d] rectangular
matrices.
The completenessrelation (3.51)

Y crCa=1,  ([d x d] unit matrix),
A

A\a1az2...ap o dg...d __gai sa dg
E (C )b1~~~bq ) (OA)ach...chcl _5C115022 "'5bq

)
——— 2 — —_——
3 =" (4.20)
A —— —_—
CAP, =d\C*,
P,CH=6C",  (nosumon\, ), (4.21)

follows immediately from (3.50) and (4.19).
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4.3 ZERO- AND ONE-DIMENSIONAL SUBSPACES

If a projection operator projects onto a zero-dimensional subspace, it must vanish
identically:

=0 = Py="7 —< T =o0. (4.22)

This follows from (3.49); d, is the number of 1’s on the diagonal on the right-hand
side. For d, = 0 the right-hand side vanishes. The general form of P, is

ks
Py=> My, (4.23)
k=1
where M, are the invariant matrices used in construction of the projector operators,
and ¢ are numerical coefficients. Vanishing of P, therefore implies a relation
among invariant matrices M.
If a projection operator projects onto a 1-dimensional subspace, its expression, in
terms of the clebsches (4.18), involves no summation, so we can omit the interme-
diate line

d)\ =1 = P)\ = : : = (CA)ZE%?Z)';GP (C)\)qucjcll .
(4.24)

For any subgroup of SU(n), the reps are unitary, with unit determinant. On the
1-dimensional spaces, the group acts trivially, G = 1. Hence, if d \ = 1, the clebsch
C in (4.24) is an invariant tensor in VP @ V9,

4.4 INFINITESIMAL TRANSFORMATIONS

A unitary transformation G infinitesimally close to unity can be written as
Gl =62 +iDt, (4.25)

where D is a hermitian matrix with small elements, |D%| < 1. The actionof g € G

on the conjugate space is given by
(GT)* = G = 6 —iDy . (4.26)

D can be parametrized by N < n? real parameters. N, the maximal number of
independent parameters, is called the dimension of the group (also the dimension of
the Lie algebra, or the dimension of the adjoint rep).

In this monograph we shall consider only infinitesimal transformations of form
G = 1+1iD, |Dy| < 1. We do not study the entire group of invariances, but only the
transformations (3.11) connected to the identity. For example, we shall not consider
invariances under coordinate reflections.

The generators of infinitesimal transformations (4.25) are hermitian matrices and
belong to the D¢ € V @V space. However, not any element of V @ V' generates
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an allowed transformation; indeed, one of the main objectives of group theory is to
define the class of allowed transformations.

In section 3.5 we have described the decomposition of a tensor space into (ir)re-
ducible subspaces. As a particular case, consider the decomposition of V@ V. The
corresponding projection operators satisfy the completeness relation (4.20):

1
1=—T+Py+ E P,
n
AZA

a Sc 1 a Sc a ¢ a ¢
5d5b=55b5d+ (Pa)p,a+ E (Px)bsa
AZEA

:=%> C+}C+Z:}§-C. (4.27)

If 6§ is the only primitive invariant tensor, then V' ® V' decomposes into two sub-
spaces, and there are no other irreducible reps. However, if there are further primitive
invariant tensors, V@V decomposes into more irreducible reps, indicated by the sum
over \. Examples will abound in what follows. The singlet projection operator 7'/n
always figures in this expansion, as 7, § is always one of the invariant matrices (see
the example worked out in section 2.2). Furthermore, the infinitesimal generators
D¢ must belong to at least one of the irreducible subspaces of V& V.

This subspace is called the adjoint space, and its special role warrants introduction
of special notation. We shall refer to this vector space by letter A, in distinction to
the defining space V' of (3.10). We shall denote its dimension by IV, label its tensor
indices by i, 7, k .. ., denote the corresponding Kronecker delta by a thin, straight
line,

dij=1 —— 1, 4,7=12,...,N, (4.28)

and the corresponding clebsches by

1 a
C i,a:—Tia:i{ a,b:1,2,...,n
(Ca)ist = =T )
i=1,2,...,N.

Matrices T; are called the generators of infinitesimal transformations. Here a is an
(uninteresting) overall normalization fixed by the orthogonality condition (4.19):

(T3)(T5) =tr(TiT) = ady;

{ }o=a (4.29)

The scale of 77 is not set, as any overall rescaling can be absorbed into the normaliza-
tion a. For our purposes it will be most convenientto use a = 1 as the normalization
convention. Other normalizations are commonplace. For example, SU (2) Pauli ma-
trices T; = %al- and SU (n) Gell-Mann [137] matrices T; = %)\i are conventionally
normalized by fixing a = 1/2:

1

tI’(TiTj) = 551'3- . (430)
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The projector relation (4.18) expresses the adjoint rep projection operators in terms

of the generators:
a c 1 a c 1
(Pa)g. G = ()15 =~ Y- (4.3

Clearly, the adjoint subspace is always included in the sum (4.27) (there must
exist some allowed infinitesimal generators D®, or otherwise there is no group to
describe), but how do we determine the corresponding projection operator?

The adjoint projection operator is singled out by the requirement that the group
transformations do not affect the invariant quantities. (Remember, the group is de-
fined as the totality of all transformations that leave the invariants invariant.) For
every invariant tensor ¢, the infinitesimal transformations G = 1 + D must sat-
isfy the invariance condition (3.27). Parametrizing D as a projection of an arbitrary
hermitian matrix H € V@V into the adjoint space, D = P, H € V®V,

Dg = é(Ti)gei 5 €; = 2 tI’(TzH) N (432)
we obtain the invariance condition, which the generators must satisfy: they annihi-
late invariant tensors:

Tig=0. (4.33)

To state the invariance condition for an arbitrary invariant tensor, we need to
define the generators in the tensor reps. By substituting G = 1 + ie - T+ O(e?)
into (3.15) and keeping only the terms linear in ¢, we find that the generators of
infinitesimal transformations for tensor reps act by touching one index at a time:

a1a2...ap dy...d _ a1 sa ap sd d
(L)% ot = (T1)a1022 .. 0220} .. .0y
a a a, cd dg a1 sa ap sd dg
+0et (Ti)es - 0er Gy, - 0yt + o+ 08107 - (Th)er by, - . 0y
SO (T L — L 5SS (T (4:34)

This forest of indices vanishes in the birdtrack notation, enabling us to visualize the
formula for the generators of infinitesimal transformations for any tensor represen-
tation:

— l —— : « <
—_ T e = < + — — , (4.35)
—— —— > >

with a relative minus sign between lines flowing in opposite directions. The reader
will recognize this as the Leibnitz rule.
Tensor reps of the generators decompose in the same way as the group reps ( 3.60):

T, = Z C)\Ti(A)CA
A

e

—EN A
—<—:E — )
—— )\_)_

— A

t44
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The invariance conditions take a particularly suggestive form in the diagrammatic
notation. Equation (4.33) amounts to the insertion of a generator into all external
legs of the diagram corresponding to the invariant tensor ¢:

(4.36)

The insertions on the lines going into the diagram carry a minus sign relative to the
insertions on the outgoing lines.

Clebsches are themselves invariant tensors. Multiplying both sides of (3.60) with
C', and using orthogonality (4.19), we obtain

C\G=G\Cy\, (nosumon)\). (4.37)

The Clebsch-Gordan matrix C'y is a rectangular [d x d] matrix, hence g € G acts
onitwitha [dy x d] rep from the left, and a [d x d] rep from the right. (3.48) is the
statement of invariance for rectangular matrices, analogous to (3.30), the statement
of invariance for square matrices:

Cr=Glona,
cCr=GTCAGy . (4.38)

The invariance condition for the clebsches is a special case of (4.36), the invariance
condition for any invariant tensor:

0=-TNCy + C\T;

—— —L <
by —— A —— A
Oz—ig P == P == :
—— —— ——
—— —— ——
A « <
LS P P (4.39)
—— Z

The orthogonality condition (4.19) now yields the generators in A rep in terms of
the defining rep generators:

~

A A

A A

YY
YY
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AN
AN

4

Y

Thereality of theadjoint rep. For hermitian generators, the adjoint rep is real, and
the upper and lower indices need not be distinguished; the “propagator” needs no
arrow. For nonhermitian choices of generators, the adjoint rep is complex (“gluon”
lines carry arrows), but A and A are equivalent, as indices can be raised and lowered
by the Cartan-Killing form,

gij = tr(T)Ty) . (4.41)

The Cartan canonical basis D = ¢,H; + e, E, + €, F_, is an example of a
nonhermitian choice. Here we shall always assume that 7'; are chosen hermitian.

45 LIE ALGEBRA

As the simplest example of computation of the generators of infinitesimal transfor-
mations acting on spaces other than the defining space, consider the adjoint rep.
Using (4.40) onthe V@V — A adjoint rep clebsches (i.e., generators 7°;), we obtain

J _ _ (4.42)

(Ti)j = (T)e(T)e(Ty)5 — (To)e(T)e(Th)j -

Our convention is always to assume that the generators 7'; have been chosen
hermitian. That means that ¢, in the expansion (4.32) is real; A is a real vector
space, there is no distinction between upper and lower indices, and there is no need
for arrows on the adjoint rep lines (4.28). However, the arrow on the adjoint rep
generator (4.42) is necessary to define correctly the overall sign. If we interchange
the two legs, the right-hand side changes sign:

i —_— /l\ (4.43)

(the generators for real reps are always antisymmetric). This arrow has no absolute
meaning; its direction is defined by (4.42). Actually, as the right-hand side of (4.42)
is antisymmetric under interchange of any two legs, it is convenient to replace the
arrow in the vertex by a more symmetric symbol, such as a dot:

00
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(T)jk = —iCijr, = — tr[T;, Ty Ty, (4.44)

and replace the adjoint rep generators (T’;) ;i by the fully antisymmetric structure
constants iC; .. The factor i ensures their reality (in the case of hermitian generators
T;), and we keep track of the overall signs by always reading indices counterclock-

wise around a vertex:
i

—iCijp = (4.45)

j k
* —_— gz (4.46)

Asall other clebsches, the generators must satisfy the invariance conditions (4.39):

C€C

Redrawing this a little and replacing the adjoint rep generators ( 4.44) by the structure
constants, we find that the generators obey the Lie algebra commutation relation

i

- XY

T,T; — T;T,=iCi;n Ty . (4.47)

In other words, the Lie algebra is simply a statement that 77;, the generators of in-
variance transformations, are themselves invariant tensors. The invariance condition
for structure constants C';;; is likewise

Rewriting this with the dot-vertex (4.44), we obtain

H_/X\:I. (4.48)

This is the Lie algebra commutator for the adjoint rep generators, known as the
Jacobi relation for the structure constants

Cijmcmkl - Cljmcmki = imlekm . (449)

Hence, the Jacobi relation is also an invariance statement, this time the statement
that the structure constants are invariant tensors.

Sign convention for C;;i. A word of caution about using (4.47): vertex C,j, is
an oriented vertex. If the arrows are reversed (matrices 7;, 7; multiplied in reverse
order), the right-hand side acquires an overall minus sign.
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4.6 OTHER FORMSOF LIE ALGEBRA COMMUTATORS

In our calculations we shall never need explicit generators; we shall instead use the
projection operators for the adjoint rep. For rep A they have the form

PAg§ }C a,b=1,2,...,n

a,B=1,...,dx. (4.50)
The invariance condition (4.36) for a projection operator is

PR ™

Contracting with (7;)¢ and defining [dy x dy] matrices (T¢)2 = (P)$,5, we
obtain

[Tb 7Td] (PA)bﬂer TeC(PA)Zﬂz

a bc

At e

This is a common way of stating the Lie algebra conditions for the generators in an
arbitrary rep \. For example, for U (n) the adjoint projection operator is simply a unit
matrix (any hermitian matrix is a generator of unitary transformation; cf. chapter 9),
and the right-hand side of (4.52) is given by

Un),SU(): [T, T] = 6¢T% — TE5% . (4.53)

For the orthogonal groups the generators of rotations are antisymmetric matrices,
and the adjoint projection operator antisymmetrizes generator indices:

2 _gbcTad + gdeac

Apart from the normalization convention, these are the familiar Lorentz group com-
mutation relations (we shall return to this in chapter 10).

1 — .
SO(n): [Ty, Ted) = _{ JacTbd = gadThe } . (4.54)

4.7 CLASSIFICATION OF LIE ALGEBRASBY THEIR PRIMITIVE
INVARIANTS

There is a natural hierarchy to invariance groups, hinted at in sections. 2.1-3.6,
that can perhaps already be grasped at this stage. Suppose we have constructed the
invariance group GG, which preserves primitives (3.39). Adding a new primitive, let
us say a quartic invariant, means that we have imposed a new constraint; only those
transformations of G, that also preserve the additional primitive constitute G, the
invariance group of —, L , . Hence, G5 C G, is a subgroup of G;. Suppose
now that you think that the primitiveness assumption is too strong, and that some
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quartic invariant, let us say (3.37), cannot be reduced to a sum of tree invariants
(3.41), i.e, itis of form

= >< + (rest of (3.41)),

where X is a new primitive, not included in the original list of primitives. By the
above argument only a subgroup G 5 of transformations in G ; preserve the additional
invariant, Gs C Gs. If G5 does not exist (the invariant relations are so stringent that
there remain no transformations that would leave them invariant), the maximal set
of primitives has been identified.

4.8 IRRELEVANCY OF CLEBSCHES

As was emphasized in section 4.2, an explicit choice of clebsches is highly arbitrary;
it corresponds to a particular coordinatization of the d x-dimensional subspace V.
For computational purposes clebsches are largely irrelevant. Nothing that a physicist
wants to compute depends on an explicit coordinatization. For example, in QCD the
physically interesting objects are color singlets, and all color indices are summed
over: one needs only an expression for the projection operators (4.31), not for the
C'\’s separately.

Again, a nice example is the Lie algebra generators 7°;. Explicit matrices are often
constructed (Gell-Mann \; matrices, Cartan’s canonical weights); however, in any
singlet they always appear summed over the adjoint rep indices, as in (4.31). The
summed combination of clebsches is just the adjoint rep projection operator, a very
simple object compared with explicit 7; matrices (P 4 is typically a combination
of a few Kronecker deltas), and much simpler to use in explicit evaluations. As we
shall show by many examples, all rep dimensions, casimirs, etc.. are computable
once the projection operators for the reps involved are known. Explicit clebsches
are superfluous from the computational point of view; we use them chiefly to state
general theorems without recourse to any explicit realizations.

However, if one has to compute noninvariant quantities, such as subgroup embed-
dings, explicit clebsches might be very useful. Gell-Mann [ 137] invented \; matrices
inorder toembed SU (2) of isospin into SU (3) of the eightfold way. Cartan’s canon-
ical form for generators, summarized by Dynkin labels of a rep (table 7.6) is a very
powerful tool in the study of symmetry-breaking chains [ 312, 126]. The same can
be achieved with decomposition by invariant matrices (a nonvanishing expectation
value for a direction in the defining space defines the little group of transformations
in the remaining directions), but the tensorial technology in this context is underde-
veloped compared to the canonical methods. And, as Stedman [317] rightly points
out, if you need to check your calculations against the existing literature, keeping
track of phase conventions is a necessity.
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4.9 A BRIEF HISTORY OF BIRDTRACKS

Ich wollte nicht eine abstracte Logik in Formeln darstellen,
sondern einen Inhalt durch geschriebene Zeichen in
genauerer und Ubersichtlicherer Weise zum Ausdruck brin-
gen, als es durch Worte moglich ist.

— Gottlob Frege

In this monograph, conventional subjects — symmetric group, Lie algebras (and, toa
lesser extent, continuous Lie groups) — are presented in a somewhat unconventional
way, in a flavor of diagrammatic notation that | refer to as “birdtracks.” Similar
diagrammatic notations have been invented many times before, and continue to be
invented within new research areas. The earliest published example of diagrammatic
notation as a language of computation, not a mere mnemonic device, appears to
be F.L.G. Frege’s 1879 Begriffsschrift [127], at its time a revolution that laid the
foundation of modern logic. The idiosyncratic symbolism was not well received,
ridiculed as “incorporating ideas from Japanese.” Ruined by costs of typesetting,
Frege died a bitter man, preoccupied by a deep hatred of the French, of Catholics,
and of Jews.

According to Abdesselam and Chipalkatti [ 4], another precursor of diagrammatic
methods was the invariant theory discrete combinatorial structures introduced by
Cayley [50], Sylvester [321], and Clifford [61, 183], reintroduced in a modern,
diagrammatic notation by Olver and Shakiban [ 264, 265].

In his 1841 fundamental paper [ 167] on the determinants today known as “Jaco-
bians,” Jacobi initiated the theory of irreps of the symmetric group S. Schur used
the Sy, irreps to develop the representation theory of GL(n;C) in his 1901 disser-
tation [306], and already by 1903 the Young tableaux [ 356, 338] (discussed here in
chapter 9) came into use as a powerful tool for reduction of both S, and GL(n;C)
representations. In quantum theory the group of choice [ 342] is the unitary group
U(n), rather than the general linear group G L(n; C). Today this theory forms the
core of the representation theory of both discrete and continuous groups, described
in many excellent textbooks [238, 64, 348, 138, 26, 11, 316, 132, 133, 228]. Permu-
tations and their compositions lend themselves naturally to diagrammatic represen-
tation developed here in chapter 6. In his extension of the GL(n; C) Schur theory
to representations of SO(n), R. Brauer [31] introduced diagrammatic notation for
d;; in order to represent “Brauer algebra” permutations, index contractions, and
matrix multiplication diagrammatically, in the form developed here in chapter 10.

His equation (39)
5 Do
/ /—:

(send index 1 to 2, 3 to 4, keep 5, contract ingoing (3 - 4), outgoing (1 - 3)) is the
earliest published proto-birdtrack I know about.

R. Penrose’s papers are the first (known to me) to cast the Young projection
operators into a diagrammatic form. In this monograph | use Penrose diagrammatic
notation for symmetrization operators [ 280], Levi-Civita tensors [282], and “strand
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networks” [281]. For several specific, few-index tensor examples, diagrammatic
Young projection operators were constructed by Canning [41], Mandula [227], and
Stedman [318].

It is quite likely that since Sophus Lie’s days many have doodled birdtracks
in private without publishing them, partially out of a sense of gravitas and in no
insignificant part because preparing these doodles for publications is even today a
painful thing. I have seen unpublished 1960s course notes of J. G. Belinfante [ 6, 19],
very much like the birdtracks drawn here in chapters 6-9, and there are surely many
other such doodles lost in the mists of time. But, citing Frege [128], “the comfort
of the typesetter is certainly not the summum bonum,” and now that the typesetter
is gone, it is perhaps time to move on.

The methods used here come down to us along two distinct lineages, one that can
be traced to Wigner, and the other to Feynman.

Wigner’s 1930s theory, elegantly presented in his group theory monograph [ 345],
is still the best book on what physics is to be extracted from symmetries, be it
atomic, nuclear, statistical, many-body, or particle physics: all physical predictions
(“spectroscopic levels™) are expressed in terms of Wigner’s 3n-; coefficients, which
can be evaluated by means of recursive or combinatorial algorithms. As explained
here in chapter 5, decomposition (5.8) of tensor products into irreducible reps implies
that any invariant number characterizing a physical system with a given symmetry
corresponds to one or several “vacuum bubbles,” trivalent graphs (a graph in which
every vertex joins three links) with no external legs, such as those listed in table 5.1.

Since the 1930s much of the group-theoretical work on atomic and nuclear
physics had focused on explicit construction of clebsches for the rotation group
SO(3) ~ SU(2). The first paper recasting Wigner’s theory in graphical form ap-
pears to be a 1956 paper by I. B. Levinson [ 213], further developed in the influental
1960 monograph by A. P. Yutsis (later A. Jucys), I. Levinson and V. Vanagas [ 357],
published in English in 1962 (see also refs. [ 109, 33]). A recent contribution to this
tradition is the book by G. E. Stedman [318], which covers a broad range of appli-
cations, including the methods introduced in the 1984 version of the present mono-
graph [82]. The pedagogical work of computer graphics pioneer J. F. Blinn [ 25],
who was inspired by Stedman’s book, also deserves mention.

The main drawback of such diagrammatic notations is lack of standardization,
especially in the case of clebsches. In addition, the diagrammatic notations designed
for atomic and nuclear spectroscopy are complicated by various phase conventions.

R. P. Feynman went public with Feynman diagrams on my second birthday, April
1, 1948, at the Pocono Conference. The idiosyncratic symbolism (Gleick [ 141]
describes it as “chicken-wire diagrams™) was not well received by Bohr, Dirac,
and Teller, leaving Feynman a despondent man [141, 307, 237]. The first Feynman
diagram appeared in print in Dyson’s article [106, 308] on the equivalence of (at
that time) the still unpublished Feynman theory and the theories of Schwinger and
Tomonaga.

If diagrammatic notation is to succeed, it need be not only precise, but also beau-
tiful. Itis in this sense that this monograph belongs to the tradition of R. P. Feynman,
whose sketches of the very first “Feynman diagrams” in his fundamental 1948 Q.E.D.
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paper [119, 308] are beautiful to behold. Similarly, R. Penrose’s [280, 281] way of
drawing symmetrizers and antisymmetrizers, adopted here in chapter 6, is imbued
with a very Penrose aesthetics, and even though the print is black and white, one
senses that he had drawn them in color.

In developing the “birdtrack™ notation in 1975 | was inspired by Feynman di-
agrams and by the elegance of Penrose’s binors [280]. | liked G. 't Hooft’s 1974
double-line notation for U(n) gluon group-theory weights [ 163], and have intro-
duced analogous notation for SU (n), SO(n) and Sp(n) in my 1976 paper [ 73]. In
an influential paper, M. Creutz [69] has applied such notation to the evaluation of
SU (n) lattice gauge integrals (described here in chapter 8). The challenge was to de-
velop diagrammatic notation for the exceptional Lie algebras, and | succeeded [ 73],
except for E'g, which came later.

In the quantum groups literature, graphs composed of vertices (4.44) are called
trivalent. The Jacobi relation (4.48) in diagrammatic form was first published [ 73]
in 1976; though it seems surprising, | have not found it in the earlier literature. This
set of diagrams has since been given the moniker “IHX” by D. Bar-Natan [ 14].
In his Ph.D. thesis Bar-Natan has also renamed the Lie algebra commutator (4.47)
the “STU relation,” by analogy to Mandelstam’s scattering cross-channel variables
(s, t,u), and the full antisymmetry of structure constants (4.46) the “AS relation.”

So why call this “birdtracks” and not “Feynman diagrams™”? The difference is
that here diagrams are not a mnemonic device, an aid in writing down an integral
that is to be evaluated by other techniques. In our applications, explicit construc-
tion of clebsches would be superfluous, and we need no phase conventions. Here
“birdtracks” are everything—unlike Feynman diagrams, here all calculations are
carried out in terms of birdtracks, from start to finish. Left behind are blackboards
and pages of squiggles of the kind that made Bernice Durand exclaim: “What are
these birdtracks!?” and thus give them the name.


http://theory1.hep.wisc.edu/~bdurand/
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Chapter Five

Recouplings

Clebsches discussed in section 4.2 project a tensor in V? @ V9 onto a subspace .
In practice one usually reduces a tensor step by step, decomposing a 2-particle state
at each step. While there is some arbitrariness in the order in which these reductions
are carried out, the final result is invariant and highly elegant: any group-theoretical
invariant quantity can be expressed in terms of Wigner 3- and 6-;5 coefficients.

5.1 COUPLINGSAND RECOUPLINGS

We denote the clebsches for y @ v — A by

A (u — A —(i
—— s P)\ = ——l . (51)

— — —

v v

Here A, i, v are rep labels, and the corresponding tensor indices are suppressed.
Furthermore, if 1 and v are irreducible reps, the same clebsches can be used to
project u @ A — v

dy
P,=-- , 5.2
- 52
andv @\ — [
w
d
P“:d_# v - (5.3)
A

5
>

A

Here the normalization factors come from P2 = P condition. In order to draw the
projection operators in a more symmetric way, we replace clebsches by 3-vertices:

u

A 1
= — . 5.4
NCRR (5.4)

A

In this definition one has to keep track of the ordering of the lines around the vertex.
If in some context the birdtracks look better with two legs interchanged, one can

0
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L__{ - L_Qu< (5.5)

While all sensible clebsches are normalized by the orthonormality relation (4.19),
in practice no two authors ever use the same normalization for 3-vertices (in other
guises known as 3-j coefficients, Gell-Mann A matrices, Cartan roots, Dirac
matrices, etc.). For this reason we shall usually not fix the normalization

n
: . &
L—O—ﬁzm—d, ay = dV, (5.6)
A

v

leaving the reader the option of substituting his or her favorite choice (suchasa = %
if the 3-vertex stands for Gell-Mann %/\i, etc.).

To streamline the discussion, we shall drop the arrows and most of the rep labels
in the remainder of this chapter — they can always easily be reinstated.

The above three projection operators now take a more symmetric form:

use Yutsis’s notation [357]:

1 I
Py=— >t
a) v
1 \%
P,=— >
au "
1 A
P,=— ) . (5.7)
ay

08
In terms of 3-vertices, the completeness relation (4.20) is

B d A
=y o> (53)
A @ v
v
Any tensor can be decomposed by successive applications of the completeness
relation:

u

—— 1D C 1 1DR)
——— S o axa
1 11 A
A v A B Gy

Hence, if we know clebsches for A ® u — v, we can also construct clebsches for
ARu®r®...— p. However, there is no unique way of building up the clebsches;
the above state can equally well be reduced by a different coupling scheme

- iii% (5.10)
- ) ax ay, ay i ’ ’
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Consider now a process in which a particle in the rep y interacts with a particle
in the rep v by exchanging a particle in the rep w:
cC— M

o (5.11)

P ——

The final particles are in reps p and o. To evaluate the contribution of this exchange
to the spectroscopic levels of the -1 particles system, we insert the Clebsch-Gordan
series (5.8) twice, and eliminate one of the sums by the orthonormality relation ( 5.6):

o —py— dx
p_(” ; )\N.@ >—<|>—< (5.12)

By assumption A\, \’ are irreps, so we have a recoupling relation between the ex-

Cha geS in “s” and ‘t Chan eIS":
A

o m
o
0 =Y H . (5.13)
K raeo<

We shall refer to 6 as 3-j coefficients and @ as 6-j coefficients, and commit
ourselves to no particular normalization convention.

In atomic physics it is customary to absorb e into the 3-vertex and define a 3-j
symbol [238, 286, 345]

(2 ’ﬁ‘ z)z(—l)“\/:@ x—<. (5.14)

Herea = 1,2,...,d,, €tc, are indices, \, u, v rep labels and w the phase conven-
tion. Fixing a phase convention is a waste of time, as the phases cancel in summed-
over quantities. All the ugly square roots, one remembers from quantum mechanics,

come from sticking /e into 3-5 symbols. Wigner [345] 6-5 symbols are related
to our 6-;5 coefficients by

c p
{A " y}_ (—1)
w p o
el e
A p [} p
The name 3n-j symbol comes from atomic physics, where a recoupling involves
3n angular momenta j1, ja, . . . , j3n (S€e section 14.2).

Most of the textbook symmetries of and relations between 6-j symbols are obvious
from looking at the corresponding diagrams; others follow quickly from complete-
ness relations.

If we know the necessary 6-;5’s, we can compute the level splittings due to single
particle exchanges. In the next section we shall show that a far stronger claim can
be made: given the 3- and 6-; coefficients, we can compute all multiparticle matrix
elements.

(5.15)
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Vertex Self-energy Total
Skeletons insertions insertions number

1-j O 1
3j @ 1
6-j N abD 2
9l NS
12-5 % @m@ 16

& = =0y
o LHLD
RN

Table 5.1 Topologically distinct types of Wigner 3n-j coefficients, enumerated by drawing
all possible graphs, eliminating the topologically equivalent ones by hand. Lines
meeting in any 3-vertex correspond to any three irreducible representations with
a nonvanishing Clebsch-Gordan coefficient, so in general these graphs cannot be
reduced to simpler graphs by means of such as the Lie algebra (4.47) and Jacobi
identity (4.48).

(6]

5.2 WIGNER 3N-J COEFFICIENTS

An arbitrary higher-order contribution to a 2-particle scattering process will give a
complicated matrix element. The corresponding energy levels, crosssections, €tc.,
are expressed in terms of scalars obtained by contracting all tensor indices; diagram-
matically they look like “vacuum bubbles,” with 3n internal lines. The topologically
distinct vacuum bubbles in low orders are given in table 5.1.

In group-theoretic literature, these diagrams are called 3n-j symbols, and are
studied in considerable detail. Fortunately, any 3n-j symbol that contains as a sub-
diagram a loop with, let us say, seven vertices,
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can be expressed in terms of 6-5 coefficients. Replace the dotted pair of vertices by
the cross-channel sum (5.13):

(5.16)

Now the loop has six vertices. Repeating the replacement for the next pair of vertices,
we obtain a loop of length five:

- dx@ d“® > . (5.17)

Repeating this process we can eliminate the loop altogether, producing 5-vertex-
trees times bunches of 6-; coefficients. In this way we have expressed the original
3n-j coefficients in terms of 3(n-1)-; coefficients and 6-;j coefficients. Repeating
the process for the 3(n-1)-j coefficients, we eventually arrive at the result that

(Bn—j) = Z (products of @) . (5.18)

5.3 WIGNER-ECKART THEOREM

For concreteness, consider an arbitrary invariant tensor with four indices:

= g?\ , (5.19)
n )
vV op

where i, v, p and w are rep labels, and indices and line arrows are suppressed. Now
insert repeatedly the completeness relation (5.8) to obtain

AR

:Za: %i ~ (5.20)
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In the last line we have used the orthonormality of projection operators — as in
(5.13) or (5.23).

In this way any invariant tensor can be reduced to a sum over clebsches (kinemat-
ics) weighted by reduced matrix elements:

(T)a = s.J . (5.21)
o7

This theorem has many names, depending on how the indices are grouped. If 7" is
a vector, then only the 1-dimensional reps (singlets) contribute

singlets

T,= > [* (5.22)
A u
a

If T is a matrix, and the reps ., u are irreducible, the theorem is called Schur’s
Lemma (for an irreducible rep an invariant matrix is either zero, or proportional to
the unit matrix):

1
T =P et = - @ — 5. (5.23)
m

If 7" is an “invariant tensor operator,” then the theorem is called the Wigner-Eckart

theorem [345, 107]:
A A
|
(7)), =a b=> =
RE
2/

A

N4

)
== —<-< (5.24)
v
\>2/

(assuming that . appears only once in A ® 1 Kronecker product). If 7 has many in-
dices, as in our original example (5.19), the theorem is ascribed to Yutsis, Levinson,
and Vanagas [357]. The content of all these theorems is that they reduce spectro-
scopic calculations to evaluation of “vacuum bubbles” or “reduced matrix elements”
(5.21).

The rectangular matrices (C',)% from (3.27) do not look very much like the
clebsches from the quantum mechanics textbooks; neither does the Wigner-Eckart
theorem in its birdtrack version (5.24). The difference is merely a difference of
notation. In the bra-ket formalism, a clebsch for A1 ® Ao — X is written as

M

A m,
n _(_<E — oA\ imidams) . (5.25)
mZ
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Representing the [dy x d,] rep of a group element g diagrammatically by a black
triangle,
D7>;L,m’7 (g) =m ‘ m (526)
we can write the Clebsch-Gordan series (3.49) as
A

1‘

24—22 —:—>_x‘_<—<—

A A
Drnllm/l (g)DrnQQmé (g) =

A

Z <)\1m1)\2m2|/\1)\25\7h>D5§1ﬁ“ (g) <)\1)\2/~\T7L1|/\1m/1/\2m/2> .
5\,1'71,7711

An “invariant tensor operator” can be written as

m
A
A
(Aema|Th[A\imy) = m2—2<—<§:ml. (5.27)
1

In the bra-ket formalism, the Wigner-Eckart theorem (5.24) is written as
<)\2m2|T,i‘L|/\1m1> = <)\)\1/\2m2|/\m)\1m1>T()\, /\1)\2) y (528)

where the reduced matrix element is given by

1
T()\, /\1)\2) = — Z <)\7”L)\17L1 |/\/\1/\27L2><)\2712|T,i\|/\1711>

d>‘2 ni,ma,mn
A
1
= 5.29
" (5.29
Ay

We do not find the bra-ket formalism convenient for the group-theoretic calculations
that will be discussed here.
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Chapter Six

Permutations

The simplest example of invariant tensors is the products of Kronecker deltas. On
tensor spaces they represent index permutations. This is the way in which the sym-
metric group S, the group of permutations of p objects, enters into the theory of
tensor reps. In this chapter, | introduce birdtracks notation for permutations, sym-
metrizations and antisymmetrizations and collect a few results that will be useful
later on. These are the (anti)symmetrization expansion formulas (6.10) and (6.19),
Levi-Civita tensor relations (6.28) and (6.30), the characteristic equations (6.50),
and the invariance conditions (6.54) and (6.56). The theory of Young tableaux (or
plethysms) is developed in chapter 9.

6.1 SYMMETRIZATION

Operation of permuting tensor indices is a linear operation, and we can represent it
by a [d x d] matrix:

0_2 - O_alag...aq dp...d1 (61)

- bl...bp iCq...C2C1

As the covariant and contravariant indices have to be permuted separately, it is
sufficient to consider permutations of purely covariant tensors.

For 2-index tensors, there are two permutations:

. . ——
identity: 1,5,°¢ = 6267 =

——
flip: o (12)0, " = 0505 = > . (6.2)

For 3-index tensors, there are six permutations:

babab b1 sba ¢b
30201 1 2 3 — €
1(11(12(137 _50.150.26(13 -
——
b3baby __ gbo by sbz ><
0(12)a1a2a37 _50,15(126(13 -

———
0(28) TN O013) = ><

0(123)2527 0(132) = % (6.3)

Subscripts refer to the standard permutation cycles notation. For the remainder of
this chapter we shall mostly omit the arrows on the Kronecker delta lines.
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The symmetric sum of all permutations,

Sa1a2...ap7bp“'b2b1:p {5b15b2. .5b 5b15b2 5224_}

ay“az az - ay
1
: ol

+><+%+} (6.4)

yields the symmetrization operator S. In birdtrack notation, a white bar drawn across
p lines will always denote symmetrization of the lines crossed. A factor of 1/p! has
been introduced in order for S to satisfy the projection operator normalization

=T

A subset of indices a1, as, ... aq, ¢ < p can be symmetrized by symmetrization
matrix Sia.. 4

bp...bg...bab
(812...q)a1a2 aq ap> proPa P2l =

ai a2

1
- ¢
512...q=§Eq. (6.6)

i {5b15b2 Lo.Bb1 g ghigte gt ...}5331}...

Overall symmetrization also symmetrizes any subset of indices:

SS12..4=8

(6.7)

Any permutation has eigenvalue 1 on the symmetric tensor space:

cS=58

EE -

Diagrammatically this means that legs can be crossed and uncrossed at will.
The definition (6.4) of the symmetrization operator as the sum of all p! permuta-
tions is inconvenient for explicit calculations; a recursive definition is more useful:

1
bp...bab b bp...b b bp...b
Salag...(lpa L = - {5011‘51(12...&177 P 2+5a25a1a3...ap7 P 2+}

S=

==

(1+0@1) +0@21) + -+ 0(p...321)) S23..p

FEETEE ) e

’BI»—ﬂ ’BI»—“B

50
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which involves only p terms. This equation says that if we start with the first index,
we end up either with the first index, or the second index and so on. The remaining
indices are fully symmetric. Multiplying by Sos ... p from the left, we obtain an
even more compact recursion relation with two terms only:

%E = % <ﬂE + (- 1)%) : (6.10)

As a simple application, consider computation of a contraction of a single pair of

indices:
o8
1 p - -

n+p—1
Sapap,l...al ’bl...bp_lap = Tsap,l...al 7b1...bp_1 . (611)

For a contraction in (p — k) pairs of indices, we have

_(ntp— DK . (6.12)

n+k—1) Ke—p—

The trace of the symmetrization operator yields the number of independent compo-
nents of fully symmetric tensors:

dstrS@ ”ﬂ?l@ %, (6.13)
n—

For example, for 2-index symmetric tensors,

ds =n(n+1)/2. (6.14)

6.2 ANTISYMMETRIZATION
The alternating sum of all permutations,

Aa1a2...ap,bp“'b2b1 p {5b1 5b2 .5b 5b1 5b2 522 + .. }

ay-az * az - ay *
1
: !

—><+%—} (6.15)
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yields the antisymmetrization projection operator A. In birdtrack notation, antisym-
metrization of p lines will always be denoted by a black bar drawn across the lines.
As in the previous section

fE +

SA=0

and in addition

=0

f -
= w

A transposition has eigenvalue —1 on the antisymmetric tensor space

O, 1+1)A -

tTE

Diagrammatically this means that legs can be crossed and uncrossed at will, but
with a factor of —1 for a transposition of any two neighboring legs.

As in the case of symmetrization operators, the recursive definition is often com-
putationally convenient

T FTT
:%{5 —@—Ugizig}. (6.19)

This is useful for computing contractions such as

o n— p—|—1
3 EE
1

n— p—|—1
Gap 1- 1a p 1= ap 1 17 bp71 . (620)

p
The number of independent components of fully antisymmetric tensors is given by

da—tr A — _n—p+ln—p+2 n
A= = = ) pfl 7

n!
{'WFB“ nzp (6.21)
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For example, for 2-index antisymmetric tensors the number of independent compo-
nents is

nin—1)
—

da = (6.22)

Tracing (p — k) pairs of indices yields

(6.23)

The antisymmetrization tensor A, ,,...,’»*?2%1 has nonvanishing components, only
if all lower (or upper) indices differ from each other. If the defining dimension is
smaller than the number of indices, the tensor A has no nonvanishing components:

1
ij -0 ifp>n. (6.24)
p

This identity implies that for p > n, not all combinations of p Kronecker deltas are
linearly independent. A typical relation is the p = n + 1 case

OZI!IHMZ H_H+LlH_ (6.25)
+XK+XK—}< (6.26)

For example, for n = 2 we have
o — o1 6c0d 4 6] 669 + 5156 — 616559

f e d

n=2: 0=

a b c

0=0/6¢64 — 676

1K

€
c

6.3 LEVI-CIVITA TENSOR

An antisymmetric tensor, with n indices in defining dimension n, has only one
independent component (d,, = 1 by (6.21)). The clebsches (4.17) are in this case
proportional to the Levi-Civita tensor:

al
(CA)l ’an...azm = (¢hn--a201 — Eaz
a1
(CA)aras...an + =Céaraz.an = %ﬂg : (6.27)

with e'?+" = ¢, _,, = 1. Thisdiagrammatic notation for the Levi-Civita tensor was
introduced by Penrose [280]. The normalization factors C' are physically irrelevant.
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They adjust the phase and the overall normalization in order that the Levi-Civita
tensors satisfy the projection operator (4.18) and orthonormality (4.19) conditions:

1
ai1ag...a
—— €ty b €T = Ay by b

N!
1
ﬁealazman6(11(12...1171 :611 =1 , ﬁ = 1. (628)

With our conventions,

QAp...a2071

Z'n(n—l)/Q

NG

The phase factor arises from the hermiticity condition (4.15) for clebsches (remem-
ber that indices are always read in the counterclockwise order around a diagram),

HE

7 €aras...anp — 0 €ay,...a2a1 -

(6.29)

Transposing the indices
= . . . = (_1)71(7171)/2

€aras...an = “€azar..an = =

yields ¢ = n(n — 1)/2. The factor 1/+/n! is needed for the projection operator
normalization (3.50).
Given n dimensions we cannot label more than » indices, so Levi-Civita tensors

satisfy
0= % . (6.30)

Ean s.a2a1

12 3-nt
For example, for
n=2: 0:+ﬁ—%ﬁ+ﬂ
0= 5gebc — (5?6@0 + 5?6,117 . (6.31)

This is actually the same as the completeness relation (6.28), as can be seen by
contracting (6.31) with €. and using

1
51)

Cace?®=5". (6.32)

This relation is one of a series of relations obtained by contracting indices in the
completeness relation (6.28) and substituting (6.23):

Ap...Q ap...a aj...ap
€ap...apirby...bi € " fr Ak lzk!(n_k)!Abk---bn Lot
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(6.33)
Such identities are familiar from relativistic calculations (n = 4):
eabcdeag.fe:(sgcfd67 Eabcdeabfe = 25{;
€abcd€abce = 652 s Eabcdeade =24 y (6.34)
where the generalized Kronecker delta is defined by
1
O, = Awag a7 (6.35)

6.4 DETERMINANTS

Consider an [n? x n?] matrix M, ” defined by a direct product of [n x n] matrices
M?

Mo =Mayay...a,7 0" = MM . MY

—_— e ———

M:‘f_ M _“:“Eﬂ_‘ﬂ (6.36)
—— —_—  ———
where
M! = e, (6.37)

The trace of the antisymmetric projection of M, ” is given by

try AM = Agpe.a,> V" MM, ... MG

(6.38)

The subscript p on tr,(...) distinguishes the traces on [n? x n?] matrices M2
from the [n x n] matrix trace tr M. To derive a recursive evaluation rule for tr , AM,

use (6.19) to obtain
—_—
_ ]19 @ (- 1)@ . (6.39)
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Iteration yields

i vl el MP
€ € < e — i —
_ “, e O 4 .
@ }
{>
{> {>
{> {>

(6.40)
Contracting with M2, we obtain
tr, AM = (—1)F=1 (trp_p AM) tr M* . (6.41)
P

k=1

This formula enables us to compute recursively all tr, AN as polynomialsin traces
of powers of M:

tro AM=1, try AM = C) = tr M (6.42)
1
- 00-O)
tro AM:% {(tr M)* — tr M?} (6.43)

OO
O

trs AM = ; {(tr M)? — 3(tr M) (tr M?) + 2 tr M?} (6.44)

D QD o
O

1
try AM = ol {(tr M)* — 6(txr M)? tr M?

)

Wl =

+3(tr M?)? + 8 tr M tr M — 6 tr M} . (6.45)
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For p = n (M? are [n x n] matrices) the antisymmetrized trace is the determinant
det M = tr, AM = Ag,ay...a, 72" MET M2 . My (6.46)
The coefficients in the above expansions are simple combinatoric numbers. A general

term for (tr M 1)1 .. (tr M*)®s, with oy loops of length £, a» loops of length
¢5 and so on, is divided by the number of ways in which this pattern may be obtained:

030052 0 anlag! gl (6.47)

6.5 CHARACTERISTIC EQUATIONS

We have noted that the dimension of the antisymmetric tensor space is zero for
n < p. This is rather obvious; antisymmetrization allows each label to be used at
most once, and it is impossible to label more legs than there are labels. In terms of
the antisymmetrization operator this is given by the identity
A=0 ifp>n. (6.48)
This trivial identity has an important consequence: it guarantees that any [n x n]
matrix satisfies a characteristic (or Hamilton-Cayley or secular) equation. Take p =
n + 1 and contract with M n index pairs of A:
Aca1a2...an 7bn...b2b1d Ml;zll Ml()l; te Ml()lnn = 0
c d
<
<
<

“ =0. (6.49)

We have already expanded this in (6.40). For p = n + 1 we obtain the characteristic
equation

0=> (=1)*(trp_r AM)M", (6.50)
k=0
=M" — (tr M)M" ™ + (trg AM) M™% — ... 4+ (=1)" (det M) 1.

6.6 FULLY (ANTI)SYMMETRIC TENSORS

We shall denote a fully symmetric tensor by a small circle (white dot)

dabc...f = S I (651)
abc..d
A symmetric tensor dype...q = dpac...d = dach...qa = - - . satisfies
Sd=d

:r ( H (6.52)
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If this tensor is also an invariant tensor, the invariance condition (4.36) can be written

as
b bbb
=p Hjé (p = number of indices) . (6.53)

Hence, the invariance condition for symmetric tensors is

0= : (6.54)

The fully antisymmetric tensors with odd numbers of legs will be denoted by
black dots

Faberd = AW (6.55)

abc.d
with the invariance condition stated compactly as

0= . (6.56)

If the number of legs is even, an antisymmetric tensor is anticyclic,

fabc...d = _fbc...da 5 (657)
and the birdtrack notation must distinguish the first leg. A black dot is inadequate
for the purpose. A bar, as for the Levi-Civita tensor (6.27), or a semicircle for the
symplectic invariant introduced below in (12.3), and fully skew-symmetric invariant
tensors investigated in (15.27)

febe = m fabc = m (6.58)

or a similar notation fixes the problem.

6.7 IDENTICALLY VANISHING TENSORS

Noting that a given group-theoretic weight vanishes identically is often an important
step in a birdtrack calculation. Some examples are

{X 0, {XEO, (6.59)
TA-

0, =0. (6.60)
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Ingraphtheory [267, 293] the left graph in (6.59) is known as the Kuratowsky graph,
and the right graph in (6.60) as the Peterson graph.

c% EO EIE = 0 q =0 (661)

(6.62)

o
bR o

The above identities hold for any antisymmetric 3-index tensor; in particular, they
hold for the Lie algebra structure constants <C'’;;. They are proven by mapping a
diagram into itself by index transpositions. For example, interchange of the top and
bottom vertices in (6.59) maps the diagram into itself, but with the (—1)° factor.
From the Lie algebra (4.47) it also follows that for any irreducible rep we have

:K -0, /@:o. (6.64)
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Chapter Seven

Casimir operators

The construction of invariance groups, developed elsewhere in this monograph, is
self-contained, and none of the material covered in this chapter is necessary for
understanding the remainder of the monograph. We have argued in section 5.2 that
all relevant group-theoretic numbers are given by vacuum bubbles (reduced matrix
elements, 3n-j coefficients, etc.), and we have described the algorithms for their
evaluation. That is all that is really needed in applications.

However, one often wants to cross-check one’s calculation against the existing
literature. In this chapter we discuss why and how one introduces casimirs (or Dynkin
indices), we construct independent Casimir operators for the classical groups and
finally we compile values of a few frequently used casimirs.

Our approach emphasizes the role of primitive invariants in constructing reps
of Lie groups. Given a list of primitives, we present a systematic algorithm for
constructing invariant matrices M ; and the associated projection operators (3.48).

In the canonical, Cartan-Killing approach one faces a somewhat different prob-
lem. Instead of the primitives, one is given the generators 7°; explicitly and no other
invariants. Hence, the invariant matrices M; can be constructed only from contrac-
tions of generators; typical examples are matrices

(&

My = Lt MFELL, (7.1)

where o, 11 could be any reps, reducible or irreducible. Such invariant matrices are
called Casimir operators.

What is a minimal set of Casimir operators, sufficient to reduce any rep to its
irreducible subspaces? Such sets can be useful, as the corresponding » Casimir
operators uniquely label each irreducible rep by their eigenvalues A 1, Ao, ... ...

The invariance condition for any invariant matrix (3.31) is

0=[T;, M] = <% - %
u

n

so all Casimir operators commute

MsM, = m ; = ; ﬂ = M4M,, etc.,
[ [

and, according to section 3.6, can be used to simultaneously decompose the rep .
If My, M, ... have been used in the construction of projection operators (3.48),
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any matrix polynomial f(My, Ms . ..) takes value f(A1, Az, ...) on the irreducible
subspace projected by P;, so polynomials in M; induce no further decompositions.
Hence, it is sufficient to determine the finite number of /;’s that form a polynomial
basis for all Casimir operators (7.1). Furthermore, as we show in the next section, itis
sufficient to restrict the consideration to the symmetrized casimirs. This observation
enables us to explicitly construct, in section 7.2, a set of independent casimirs for
each classical group.

Exceptional groups pose a more difficult challenge, partially met here in a piece-
meal fashion in chapters on each of the exceptional groups. For a definitive, sys-
tematic calculation of all casimirs for all simple Lie groups, consult van Ritbergen,
Schellekens, and Vermaseren [294].

7.1 CASIMIRSAND LIE ALGEBRA

There is no general agreement on a unique definition of a Casimir operator. We
could choose to call the trace of a product of k& generators

tr(T Ty ... Ty) = - : (7.2)

a kth order casimir. With such definition,

tI’(TjTZ‘ .

would also be a casimir, independent of the first one. However, all traces of 7°;’s that
differ by a permutation of indices are related by Lie algebra. For example,

- - . (7.3)

The last term involves a (k-1)th order casimir and is antisymmetric in the 4, j indices.
Only the fully symmetrized traces

1
hij..w = o Z tr(1T; ... Ty) = (7.4)

" perm

are not affected by the Lie algebra relations. Hence from now on, we shall use the
term “casimir” to denote symmetrized traces (ref. [248] follows the same usage,
for example). Any unsymmetrized trace tr(7;7; ... T}) can be expressed in terms
of the symmetrized traces. For example, using the symmetric group identity (see

figure 9.1)
[[REETEE I N
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the Jacobi identity (4.48) and the d;;;, definition (9.87), we can express the trace of
four generators in any rep of any semisimple Lie group in terms of the quartic and
cubic casimirs:

R I O ARG

In this way, an arbitrary kth order trace can be written as a sum over tree contrac-
tions of casimirs. The symmetrized casimirs (7.4) are conveniently manipulated as
monomial coefficients:

tr Xk = hij...m LiTj .. Tm- (77)
Forarep A\, X isa[dy xdy] matrix X = x;T;, where z; isan arbitrary N-dimensional
vector. We shall also use a birdtrack notation (6.37):
i
X, = e, = 1—l— . 7.8
b= 7 a (7.8)

b

[

The symmetrization (7.4) is automatic

tr X% = ( ) = Z 9@7’] LT = Z Tikj . . (7.9

ij---k ’ij

7.2 INDEPENDENT CASIMIRS

Not all tr X * are independent. For an n-dimensional rep a typical relation relating
various tr X* is the characteristic equation (6.50):

X" = (tr X)X" ! — (trg AX)X™ % 4 ... £ (det X). (7.10)
Scalar coefficients tr;, AX are polynomialsin tr X, computed in section 6.4. The
characteristic equation enables us to express any X P, p > n in terms of the matrix
powers X* k < n and the scalar coefficients tr X *, k < n. Therefore, if a group
has an n-dimensional rep, it has at most n independent casimirs,

P82

corresponding to tr X, tr X 2, tr X3, ... tr X™.

For a simple Lie group, the number of independent casimirs is called the rank of
the group and is always smaller than n, the dimension of the lowest-dimensional rep.
For example, for all simple groups tr 7'; = 0, the first casimir is always identically
zero. For this reason, the rank of SU(n) is n — 1, and the independent casimirs are

000 O
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The defining reps of SO(n), Sp(n), G2, Fy, E7 and Es groups have an invertible
bilinear invariant g, either symmetric or skew-symmetric. Inserting 6¢ = g.59%°
any place in a trace of k£ generators, and moving the tensor g ., through the generators
by means of the invariance condition (10.5), we can reverse the defining rep arrow:

Hence for the above groups, tr X * = 0 for & odd, and all their casimirs are of even
order.

The odd and the even-dimensional orthogonal groups differ in the orders of in-
dependent casimirs. For n = 2r + 1, there are r independent casimirs

SO2r +1) : 9 @ Q (7.13)

For n = 2r, a symmetric invariant can be formed by contractlng r defining reps
with a Levi-Civita tensor (the adjoint projection operator ( 10.13) is antisymmetric):

L) -Toe- (7.14)

tr X2" is not independent, as by (6.28), it is contained in the expansion of I,.(z)?

(7.15)

Hence, the r independent casimirs for even-dimensional orthogonal groups are

SO(2r) : : .. : . (7.16)

FTTT I \
12 @2 1 2.rx

For Sp(2r) there are no special relations, and the r independent casimirs are
trX%,O <l <

Sp(2r) : 9 Q Q (7.17)

HH H
-2

The characteristic equation (7.10), by means of WhICh we count the independent
casimirs, applies to the lowest-dimensional rep of the group, and one might worry
that other reps might be characterized by further independent casimirs. The answer
is no; all casimirs can be expressed in terms of the defining rep. For SU(n), Sp(n)
and SO(n) tensor reps this is obvious from the explicit form of the generators in
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A, 2,3, . .,r—i—l ~ SU(r+1)
B, 2,4,6,. ~ SO(2r+1)
C, 2,4,6,. ~  Sp(2r)
D, 2,4, . - 2, r ~  SO(2r)
Gy 2,6
F, 2,68, 12
Es 2,5 6,891
E; 2,6, 8,10, 12, 14 18
Es 2,8,12, 14, 18, 20, 24, 30

Table 7.1 Betti numbers for the simple Lie groups.

higher reps (see section 9.4 and related results for Sp(n) and SO(n)); they are
tensor products of the defining rep generators and Kronecker deltas, and a higher
rep casimir always reduces to sums of the defining rep casimirs, times polynomials
in n (see examples of section 9.7).

For the exceptional groups, cubic and higher defining rep invariants enter, and
the situation is not so trivial. We shall show below, by explicit computation, that
tr X3 = 0 for Eg and tr X* = c(tr X 2)? for all exceptional groups. We shall also
prove the reduction to the 2nd- and 6th-order casimirs for G - in section 16.4 and
partially prove the reduction for other exceptional groups in section 18.8. The orders
of all independent casimirs are known [30, 288, 134, 54] as the Betti numbers, listed
here in table 7.1. There are too many papers on computation of casimirs to even
attempt a survey here; we recommend ref. [ 294].

7.3 ADJOINT REP CASIMIRS

For simple Lie algebras the Cartan-Killing bilinear form (4.41) is proportional to
di;, S0 by the argument of (7.12) all adjoint rep casimirs are even. In addition, the
Jacobi identity (4.48) relates a loop to a symmetrized trace together with a set of tree
contractions of lower casimirs, linearly indepenent under applications of the Jacobi
identity. For example, we have from (7.6)

:%+é</\7\+m) (7.18)

The numbers of linearly independent tree contractions are discussed in ref. [ 73].
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74 CASIMIR OPERATORS

Most physicists would not refer to tr X * as a casimir. Casimir’s [49] quadratic
operator and its generalizations [288] are [d,, x d,,] matrices:

A
(1)) = " = [tra(Tx ... TT)] (T ... Ty)L. (7.19)
12-p
We have shown in section 5.2 that all invariants are reducible to 65 coefficients.
I,,’s are particularly easy to express in terms of 6;°s. Define

a_)7‘_

B_ o, @B=lody ab=120d (720)

Inserting the complete Clebsch-Gordan series (5.8) for A ® 1, we obtain

A A
$ P { P , & p x
M = = . 7.21
SO EERC o
P noou P Bou
The eigenvalues of M are Wigner’s 65 coefficients (5.15). It is customary to express
these 6;’s in terms of quadratic Casimir operators by using the invariance condition

TS TR, S,

Co(p) —— = Oy (\) —b— — 2 C () —— . (7.22)

u
This is an ancient formula familiar from quantum mechanics textbooks: if the total
angular momentumis J = L + S, then L - S = (J% — L? — S?). In the present
case we trace both sides to obtain

1 A A 1
T =3 {Ca2(p) — Ca(A) — Ca(p)} (7.23)
P

The pth order casimir is thus [255]
(Ip)a=(MP)q

_irreduc. CQ(p)_OQ()\)_CQ(,LL) P
- Zp: ( 2 ) &@g

If 1 is an irreducible rep, (5.23) yields
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and the 1 rep eigenvalue of I,, is given by
C — Co(\) — Ca(p)\”
Z( 2(p) 22( ) 2( )) d,. (7.24)
P
Here the sum goes over all p C A ® u, where p, A and p are irreducible reps.

Another definition of the generalized Casimir operator, in the spirit of (7.4), uses
the fully symmetrized trace:

@)
= = (NG Ti)e (7.25)
[ ]
n
We shall return to this definition in the next section.

7.5 DYNKIN INDICES

As we have seen so far, there are many ways of defining casimirs; in practice it is
usually quicker to directly evaluate a given birdtrack diagram than to relate it to
somebody’s “standard” casimirs. Still, it is good to have an established convention,
if for no other reason than to be able to cross-check one’s calculation against the
tabulations available in the literature.

Usually a rep is specified by its dimension. If the group has several inequivalent
reps with the same dimensions, further numbers are needed to uniquely determine
the rep. Specifying the Dynkin index [ 104],

0y = CD _ (L) (7.26)

B tr(C’lCi) ’

usually (but not always) does the job. A Dynkin index is easy to evaluate by birdtrack
methods. By the Lie algebra (4.47), the defining rep Dynkin index is related to a 65
coefficient:

Elgoﬁzv{@@}z:;;@ (7.27)

The 65 coefficient = tr(T;T;T;T;) is evaluated by the usual birdtrack tricks.
For SU (n), for example

OBt o
n n

The Dynkin index of a rep p in the Clebsch-Gordan series for A ® p is related to
a 675 coefficient by (7.23):

(1 A A
Co/dp = O fdr+ 0/ du + 255 — . (7.29)
P

p
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SU(n): ={}::i+}:i}+z{) (++><}
SO0 :(n_sgjic@ﬂ@ (+ X
<n+8>}jj+I+}<+) (v
) G

Sp(n):

SO(3):

SU(n): % = 2n%+6[@;%

SO(n): = (n—8) +3EQF%
at

Sp(n): = (n+38) +3

Table 7.2 (Top) Expansions of the adjoint rep quartic casimirs in terms of the defining rep, and
(bottom) reduction of adjoint quartic casimirs to the defining rep quartic casimirs,
for the classical simple Lie algebras. The normalization (7.38) is set to a = 1.

We shall usually evaluate Dynkin indices by this relation. Another convenient
formula for evaluation of Dynkin indices for semisimple groups is

_ tl")\.X2
B tI‘AX2 ’

with X defined in section 6.7. An application of this formula is given in section 9.7.

The form of the Dynkin index is motivated by a few simple considerations. First,
we want an invariant number, so we trace all indices. Second, we want a pure,
normalization independent number, so we take a ratio. tr(C';C;) is the natural nor-
malization scale, as all groups have the adjoint rep. Furthermore, unlike the Casimir
operators (7.19), which have single eigenvalues I,,(\) only for irreducible reps, the
Dynkin index is a pure number for both reducible and irreducible reps. [Exercise:
compute the Dynkin index for U(n).]

The above criteria lead to the Dynkin index as the unique group-theoretic scalar
corresponding to the quadratic Casimir operator. The choice of group-theoretic
scalars corresponding to higher casimirs is rather more arbitrary. Consider the re-
ductions of I, for the adjoint reps, tabulated in table 7.2. (The SU (n) was evaluated

N (7.30)
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as an introductory example, section 2.2. The remaining examples are evaluated by
inserting the appropriate adjoint projection operators, derived below.)

Quartic casimirs contain quadratic bits, and in general, expansions of A(\)’s in
terms of the defining rep will contain lower-order casimirs. To construct the “pure”
pth order casimirs, we introduce

AR M-8
-G89 -
e
222000«

and fix the constants A, B, C, ... by requiring that these casimirs are orthogonal:

@é:o, @é:o, (7.32)

Now we can define the generalized or orthogonal Dynkin indices [ 259, 294] by

p0Gw=Q) = du DO =)

1
p
D=, ... b2 =20)". (7.33)
where the thick line stands for . rep. Here we have chosen normalization tr(C';,C;) =
1.

The generalized Dynkin indices are not particularly convenient or natural from the
computational point of view (see ref. [ 294] for discussion of indices in “orthogonal
basis™) but they do have some nice properties. For example (as we shall show later
on), the exceptional groups tr X * = C(tr X 2)? are singled out by D* = 0.

If 1 is a Kronecker product of two reps, u = A ® p, the generalized Dynkin

indices satisfy
O, 0.0,,0,0

D® () =DP (\)d, + d DP (p) > 0, (7.34)
as the cross terms vanish by the orthonormality conditions (7.32). Substituting the
completeness relation (5.7), A ® p = > o, we obtain a family of sumrules for the
generalized Dynkin indices:

Z@ = 3" D) (0) = D (N)d, + dyDP) (p). (7.35)
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Forp =2thisisa A ® p = > o sum rule for Dynkin indices (7.28)
Undy +daly, =Y L, (7.36)

useful in checking Clebsch-Gordan decompositions.

7.6 QUADRATIC, CUBIC CASIMIRS

As the low-order Casimir operators appear so often in physics, it is useful to list
them and their relations.
Given two generators 77, 7} in [nxn] rep A, there are only two ways to form a

loop:
O L

If the A rep is irreducible, we define C'r casimir as

LN Cp—e

(T;T;)2 = Cro®. (7.37)
If the adjoint rep is irreducible, we define

tr TlTj :aéij. (738)

Usually we take X to be the defining rep and fix the overall normalization by taking
a = 1. For the adjoint rep (dimension ), we use notation

ﬁ()ﬁ = CireCire = Cy L (7.39)

Existence of the quadratic Casimir operator C 4 is a necessary and sufficient condi-
tion that the Lie algebra is semisimple [10, 104, 273]. For compact groups C' 4 > 0.
CF,a,C4, and ¢, the Dynkin index (7.28), are related by tracing the above expres-
sions:

@ =nCp = Na = NCyxl. (7.40)

While the Dynkin index is normalization independent, one of C' , a or C'4 has to
be fixed by a convention. The cubic invariants formed from 7';’s and C;;;.’s are (all
but one) reducible to the quadratic Casimir operators:

‘47‘: (% - %) J_ (7.41)
* _Ca { (7.42)

2
Ca
| e /K (7.43)
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This follows from the Lie algebra (4.47)

The one exception is the symmetrized third-order casimir

%dijk:/kz%{ﬁjuﬁ}. (7.44)

By (7.12) this vanishes for all groups whose defining rep is not complex. That leaves
behind only SU(n),n > 3 and Es. As we shall show in section 18.6, d,;, = 0 for
Eg, so only SU(n) groups have nonvanishing cubic casimirs.

7.7 QUARTIC CASIMIRS

There is no unique definition of a quartic casimir. Any group-theoretic weight that

contains a trace of four generators
}::i (7.45)

can be called a quartic casimir. For example, a 4-loop contribution to the QC'D j3

function

contains two quartic casimirs. This weight cannot be expressed as a function of
quadratic casimirs and has to be computed separately for each rep and each group.
For example, such quartic casimirs need to be evaluated for the purpose of classifi-
cation of grand unified theories [255], weak coupling expansions in lattice gauge
theories [80] and the classification of reps of simple Lie algebras [ 234].

Not every birdtrack diagram that contains a trace of four generators is a genuine

quartic casimir. For example,
m (7.47)

1
OO a0

and equals iacf, forasimple Lie algebra. However, if all loops contain four vertices
or more, Lie algebra cannot be used to reduce the diagram. For example,

is reducible by (7.42) to
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QO

T la(F)
2_ 4y (n2—
2
SO(): e —bod) n—8
n—1)(n2—4)(n
Sp(n) { 2];1)((712+7?—)&-(4)+3) n -+ 8

Normalization: =

Table 7.4 Quartic Dynkin indices (7.33) for the defining and the adjoint reps of classical
groups. For the exceptional groups the quartic Dynkin indices vanish identically.

The second diagram on the right-hand side is reducible, but the first one is not.
Hence, at least one quartic casimir from a family of quartic casimirs related by Lie
algebra has to be evaluated directly. For the classical groups, this is a straightfor-
ward application of the birdtrack reduction algorithms. For example, for SU (n) we
worked this out in section 2.2.

The results for the defining and adjoint reps of all simple Lie groups are listed in
table 7.3. In table 7.4 we have used the results of table 7.3 to compute the quartic
Dynkin indices (7.33). These computations were carried out by the methods that
will be developed in the remainder of this monograph.

7.8 SUNDRY RELATIONS BETWEEN QUARTIC CASIMIRS

In evaluations of group theory weights, the following reduction of a 2-adjoint, 2-
defining indices quartic casimir is often very convenient:

>>< a4 4 %:ﬁ : (7.50)

where the constants A and B are listed in table 7.5.
For the exceptional groups, the calculation of quartic casimirs is very simple. As
mentioned above, the exceptional groups have no genuine quartic casimirs, as

tr X4 =b(tr X?)?

:b%%. (7.51)
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The constant is fixed by contracting with U U :

3 1 3 N 1Ca
b= —— = =2 (2 _-Z4).
N(N + 2) a? N(N+2)\n 6 a
Hence, for the exceptional groups
1 1 4 /N 2
1 __3 (L _ 3 (N Cay 78
N N+2\N N+2\n 6a
1 . 25
— -t __-- 7.53
N@ CA12(N+2)’ (7.53)
1 . N+27
N% A12(N +2)° (7.54)

Here the third relation follows from the second by the Lie algebra.
To facilitate such computations, we list a selection of relations between various
quartic casimirs (using normallzatlon

Ca NO NG 2.
@ o (7.56)

The cubic casimlr is nonvanishing only for SU(n),n > 3.

NCA
% - 2A (7.57)
a

BeRe aso
\ 1 )
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v A;« XM

SUm) | n? -1 20 1 { a2 U

SO(n) | Mol (n - 2) L { — U +a E
Sp(n) | 2L (n+2) 3 ‘ -4 ~ %
Go(7) 14 4 0 —% N ” %ﬁf
F,(26) 52 3— 1 { _% U +%E
Es(27) | 78 4 8 ‘ —a h +a E
E:(56) | 133 3 I _e e gﬁ

Table 7.5 The dimension IV of the adjoint rep, the quadratic casimir of the adjoint rep 1/¢,
the vertex casimir C, and the quartic casimir (7.50) for the defining rep of all
simple Lie algebras.
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4, 53 AR SU(n + 1)
B %% = SO(2n + 1)
Cr L= Sp(2n)
p, 543 ..n32 ’ SO(2n)
n
Gy, =
F4 1 2 3 4

&
ER

1234é§6

Eg
1 2 3 456 7

Table 7.6 Dynkin diagrams for the simple Lie groups.

1 1 N Cy
— (2 _ Lt 7.59
a?N 3a( Cr+Cv) n 6a (7.59)
1 5
N _EOA (7.60)
1 1, 5 9
BN =§(C’F + CrCy + CF). (7.61)

7.9 DYNKIN LABELS

“Why are they called Dynkin diagrams?"

H. S. M. Coxeter [67]
It is standard to identify a rep of a simple group of rank » by its Dynkin labels,
a set of r integers (aja2 ... a,) assigned to the simple roots of the group by the
Dynkin diagrams. The Dynkin diagrams (table 7.6) are the most concise summary
of the Cartan-Killing construction of semisimple Lie algebras. We list them here
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only to facilitate the identification of the reps and do not attempt to derive or explain
them. In this monograph, we emphasize the tensorial techniques for constructing
irreps. Dynkin’s canonical construction is described in refs. [312, 126]. However,
in order to help the reader connect the two approaches, we will state the correspon-
dence between the tensor reps (identified by the Young tableaux) and the canonical
reps (identified by the Dynkin labels) for each group separately, in the appropriate

chapters.
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Chapter Eight

Group integrals

In this chapter we discuss evaluation of group integrals of form
/dg G G ... GGy, (8.1)

where G, is a [n x n] defining matrix rep of g € G, G is the matrix rep of the
action of g on the conjugate vector space, which we write as in (3.12),

G% = (GM)",
and the integration is over the entire range of g. As always, we assume that G is
a compact Lie group, and G, is unitary. Such integrals are of import for certain
quantum field theory calculations, and the chapter should probably be skipped by
a reader not interested in such applications. The integral (8.1) is defined by two
requirements:
1. Normalization:

/ dg=1. (8.2)

2. The action of g € G is to rotate a vector x, into 2/, = G,bzy:

— Y
Surface traced out by action of G

for all possible group elements

The averaging smears z in all directions, hence the second integration rule,
/dg G, =0, G isanontrivial rep of g, (8.3)

simply states that the average of a vector is zero.

A rep is trivial if G = 1 for all group elements g. In this case no averaging is
taking place, and the first integration rule (8.2) applies.

What happens if we average a pair of vectors x, y? There is no reason why a pair
should average to zero; for example, we know that |z|? = > z,2} = z.2° is
invariant, so it cannot have a vanishing average. Therefore, in general,

/ dgG.bGeq # 0. (8.4)
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8.1 GROUPINTEGRALSFOR ARBITRARY REPS

To get a feeling of what the right-hand side of (8.4) looks like, let us work out an
SU (n) example.

Let G,° be the defining [nxn] matrix rep of SU (n). The defining rep is nontrivial,
so it averages to zero by (8.3). The first nonvanishing average involves G ¥, the matrix
rep of the action of g on the conjugate vector space. As we shall soon have to face
a lot of indices, we immediately resort to birdtracks. In the birdtracks notation of
section 4.1,

Gl =—a——}—b, (% =a—>—}>b. (8.5)

For G the arrows and the triangle point the same way, while for G' T they point the
opposite way. Unitarity GTG = 1 is given by

In this notation, the GG integral to be evaluated is
a ——}—d

/dg . (8.7)
b >—f——c

As in the SU (n) example of section 2.2, the V ® V tensors decompose into the
singlet and the adjoint rep

——
— 1

. 2+ O 8.8)

gist = Lghgd 4 L(my)b(T)?.

We multiply (8.7) with the above decomposition of the identity. The unitarity relation
(8.7) eliminates G’s from the singlet:

= :%) C+$C (8.9)

The generators 77 are invariant (see (4.47)):
(T)§ = GGy G (Ti)§s | (8.10)
where G; is the adjoint [V x N|] matrix rep of g € G. Multiplying by (G ~1);;, we

obtain
} = % (8.11)

Hence, the pair GG'T in the defining rep can be traded in for a single G in the adjoint

rep,
:%} C+ O (8.12)

The adjointrep G;; is nontrivial, so it gets averaged to zero by (8.3). Only the singlet
survives:
1
/ dg G, G = 35553

/dg :é} C (8.13)
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Now let G be any [d x d] irrep of a compact semisimple Lie group. Irreducibility
means that any [d x d] invariant tensor A{ is proportional to J§ (otherwise one
could use A to construct projection operators of section 3.5 and decompose the
d-dimensional rep). As the only bilinear invariant is ¢ , the Clebsch-Gordan

) nonsinglets
IS XA: :)AC (8.14)

series contains one and only one singlet. Only the singlet survives the group av-
eraging, and (8.13) is true for any [d x d] irreducible rep (with n — d). If we
take G 7 and G ;¢ in inequivalent reps \, u (there is no matrix K such that
G = KGWEK-1forall g € G), then there is no way of forming a singlet, and

/dg GNV G e =0 if  N#£p. (8.15)

What happens if G is a reducible rep? In the compact index notation of section 3.2,
the group integral (8.1) that we want to evaluate is given by

/ dgG.P (8.16)

A reducible rep can be expanded in a Clebsch-Gordan series (3.60)

/dgG: ZO/T\/dgGAO,\. (8.17)
A

By the second integration rule (8.3), all nonsinglet reps average to zero, and one is
left with a sum over singlet projection operators:

/dng doclan= > P, (8.18)
singlets singlets

Group integration amounts to projecting out all singlets in a given Kronecker prod-
uct. We now flesh out the logic that led to (8.18) with a few details. For concreteness,
consider the Clebsch-Gordan series (5.8) for 1 x v = >~ . Each clebsch

(Cr)ae ' = :D—L i (8.19)

is an invariant tensor (see (4.39)):
Caci = Gaa/ GCC/ Gii’ Ca’c’i/

“D-Lzui)—wk—. (8.20)

Multiplying with G from right, we obtain the rule for the “propagation” of ¢
through the “vertex” C:

v v

Coc’ Gt =G G Coror' . (8.21)
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In this way, G G(*) can be written as a Clebsch-Gordan series, each term with a

single matrix G (see (5.8)):
u
d A
/ dgv / dg Z #M

—Z M, / dg GW,7 (8.22)

Clebsches are invariant tensors, so they are untouched by group integration. Integral
over G G(*) reduces to clebsches times integrals:

A) 1 for A singlet

/dg G 0 for A nonsinglet (823)

Nontrivial reps average to zero, yielding (8.18). We have gone into considerable

detail in deriving (8.22) in order to motivate the sum-over-the-singlets projection

operators rule (8.18). Clebsches were used in the above derivations for purely ped-
agogical reasons; all that is actually needed are the singlet projection operators.

8.2 CHARACTERS

Physics calculations (such as lattice gauge theories) often involve group-invariant
quantities formed by contracting G with invariant tensors. Such invariants are of the
form tr(hG) = hy®G,b, where h stands for any invariant tensor. The trace of an
irreducible [d x d] matrix rep A of g is called the character of the rep:

xag) = tr G =G, (8.24)
The character of the conjugate rep is
XMg) = tr GV =GN, = x,\(9)". (8.25)

Contracting (8.14) with two arbitrary invariant [d x d] tensors h® and ()¢, we
obtain the character orthonormality rel ation:

/ dg x(hg)x 5“—xk<hf*> (8.26)

The character orthonormality tells us that if two group-invariant quantities share a
G'GT pair, the group averaging sews them into a single group-invariant quantity. The
replacement of G, by the character y » (h'g) does not mean that any of the tensor
index structure is lost; G',® can be recovered by differentiating

G, = d:ax,\(th). (8.27)
The birdtracks and the characters are two equivalent notations for evaluating group
integrals.

A, p irreducible
reps '
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8.3 EXAMPLES OF GROUP INTEGRALS

We will illustrate (8.18) by two examples: SU (n) integrals over GG and GGG TG,
A product of two G’s is drawn as

a—<}—Db
G.bG.* = . (8.28)
¢ —}—d

G’s are acting on @V 2 tensor space, which is decomposable by (9.4) into the sym-
metric and the antisymmetric subspace

6b5d_( )ac’ (PA ac’

. - :}«C (8.29)

1
(Py),.,™ =5 (8502 + 6262)
:}f{: = % + X} (8.30)
(Pa),, » % (8867 + 620)
A 1 [—€—
KT X
dszw, dA:w. (8.31)

The transposition of indices b and d is explained in section 4.1; it ensures a simple
correspondence between tensors and birdtracks.

For SU(2) the antisymmetric subspace has dimension d 4 = 1. We shall return
to this case in section 15.1. For n > 3, both subspaces are nonsinglets, and by the
second integration rule,

SU(n) : /dg GG 1=0, n>2. (8.32)

As the second example, consider the group integral over GGG TGT. This rep

actson V2 @ 7 tensor space. There are various ways of constructing the singlet
projectors; we shall give two.

We can treat the V2 ®72 space as a Kronecker product of spaces ®V 2 and ®V2.
We first reduce the particle and antiparticle spaces separately by (8.29):

S—_ = == T gy

The only invariant tensors that can project singlets out of this space (for n. > 3) are
index contraction with no intermediate lines:

DE 3
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Contracted with the last two reps in (8.33), they yield zero. Only the first two reps
yield singlets

j——
—— 9= 8.35
c—— 1~ Gy T e 6

The projector normalization factors are the dimensions of the associated reps ( 3.24).
The GGGTGT group integral written out in tensor notation is

a e 1 " . . -
/dgG thchde = m (5d(52 + 5652) (5h5£ + 595}1)
1 o am (e o

Tonm—1) (0302 — 6254) (5h5§ - 5g5,{) (8.36)

We have obtained this result by first reducing ©V 2 and ®72. What happens if we

reduce V2@V~ as (V ® V)2 ? We first decompose the two V @ V7 tensor subspaces
into singlets and adjoint reps (see section 2.2):

> 1D C }C 1D—C 1D C

—_— 2

—~— "D ¢’y ¢y ¢
The two cross terms with one intermediate adjoint line cannot be reduced further. The

2-index adjoint intermediate state contains only one singlet in the Clebsch-Gordan
series (15.25), so that the final result [69] is

= 35038 e

By substituting adjoint rep projection operators (9.54), one can check that this is the
same combination of Kronecker deltas as (8.36).

To summarize, the projection operators constructed in this monograph are all that
is needed for evaluation of group integrals; the group integral for an arbitrary rep is
given by the sum over all singlets (8.18) contained in the rep.

(8.37)
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Chapter Nine

Unitary groups

P. Cvitanovi¢, H. Elvang, and A. D. Kennedy

U (n) is the group of all transformations that leave invariant the norm g = §#¢%q,
of a complex vector ¢. For U(n) there are no other invariant tensors beyond those
constructed of products of Kronecker deltas. They can be used to decompose the
tensor reps of U(n). For purely covariant or contravariant tensors, the symmetric
group can be used to construct the Young projection operators. In sections. 9.1-9.2
we show how to do this for 2- and 3-index tensors by constructing the appropriate
characteristic equations.

For tensors with more indices it is easier to construct the Young projection opera-
tors directly from the Young tableaux. In section 9.3 we review the Young tableaux,
and in section 9.4 we show how to construct Young projection operators for tensors
with any number of indices. As examples, 3- and 4-index tensors are decomposed
in section 9.5. We use the projection operators to evaluate 3n-j coefficients and
characters of U(n) in sections. 9.6-9.9, and we derive new sum rules for U (n) 3-j
and 6-5 symbols in section 9.7. In section 9.8 we consider the consequences of the
Levi-Civita tensor being an extra invariant for SU (n).

For mixed tensors the reduction also involves index contractions and the sym-
metric group methods alone do not suffice. In sections. 9.10-9.12 the mixed SU (n)
tensors are decomposed by the projection operator techniques introduced in chap-
ter 3. SU(2), SU(3), SU(4),and SU (n) are discussed from the “invariance group"
perspective in chapter 15.

9.1 TWO-INDEX TENSORS

Consider 2-index tensors ¢ ® ¢ € ®V2. According to (6.1), all permutations
are represented by invariant matrices. Here there are only two permutations, the
identity and the flip (6.2),

The flip satisfies

(0+1)(oc—1)=0. (9.1)
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The eigenvalues are A\ = 1, Ay = —1, and the corresponding projection operators
(3.48) are

p,=Z (( 11))1 ;(1—1-0) %{ +><} (9.2)

P2z_1_11=%(1_a):%{ —><} 9.3)

We recognize the symmetrization, antisymmetrization operators (6.4), (6.15); P, =
S, P, = A, with subspace dimensions d; = n(n+1)/2,d2 = n(n—1)/2.Inother
words, under general linear transformations the symmetric and the antisymmetric
parts of a tensor x,;, transform separately:

r=Szx + Az,

1 1
Tap =7 (anb + Tpa) + = (xab Zba)

—or

The Dynkin indices for the two reps follow by (7.29) from 6;’s:

N ()

20 N
N 2

=l(n+2). (9.5)
Substituting the defining rep Dynkin index ¢~' = C4 = 2n, computed in sec-
tion 2.2, we obtain the two Dynkin indices

n+2 n—2

= = . -6
él m ) 52 m (9 )

- 1+
n

9.2 THREE-INDEX TENSORS

Three-index tensors can be reduced to irreducible subspaces by adding the third
index to each of the 2-index subspaces, the symmetric and the antisymmetric. The
results of this section are summarized in figure 9.1 and table 9.1. We mix the third
index into the symmetric 2-index subspace using the invariant matrix

Q = S120(23)S12 = % . 9.7)

Here projection operators S5 ensure the restriction to the 2-index symmetric sub-
space, and the transposition o 23y mixes in the third index. To find the characteristic
equation for Q, we compute Q?2:

1 1 1
Q® =S120(23)S120(23)S12 = 3 {S12 + S120(23)S12} = 5512 + §Q

it e |
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Hence, Q satisfies

(Q-1)(Q+1/2)S12=0, (9.8)
and the corresponding projection operators (3.48) are
Q+11
P, = fsm 5 {0(23) +0323) +1}S12=8

i< <=} -Zkey
P, = ?_ - 1512—53121423312 = gE (9.10)

Hence, the symmetrlc 2-index subspace combines with the third index into a sym-
metric 3-index subspace (6.13) and a mixed symmetry subspace with dimensions

dy=trP; = n(n+1)(n+2)/3! (9.11)
4 2
do=trPy; = 3 = n(n*—-1)/3. (9.12)

The antisymmetric 2-index subspace can be treated in the same way using the
invariant matrix

Q= A120023A12 = E . (9.13)

The resulting projection operators for the antisymmetric and mixed symmetry 3-
index tensors are given in figure 9.1. Symmetries of the subspace are indicated by
the corresponding Young tableaux, table 9.2. For example, we have just constructed

(12 E=[1T208) s 12
d= - L2
3
n+1 n(n+1)(n+ 2) n -1
(2 ) 3! )- (9.14)

The projection operators for tensors with up to 4 indices are shown in figure 9.1,
and in figure 9.2 the corresponding stepwise reduction of the irreps is given in terms
of Young standard tableaux (defined in section 9.3.1).

9.3 YOUNG TABLEAUX

We have seen in the examples of sections. 9.1-9.2 that the projection operators for
2-index and 3-index tensors can be constructed using characteristic equations. For
tensors with more than three indices this method is cumbersome, and it is much
simpler to construct the projection operators directly from the Young tableaux. In
this section we review the Young tableaux and some aspects of symmetric group
representations that will be important for our construction of the projection operators
in section 9.4.
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Figure 9.1 Projection operators for 2-, 3-, and 4-index tensors in U(n), SU(n), n > p

number of indices.
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A n(n+l)
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Figure 9.2 Young tableaux for the irreps of the symmetric group for 2-, 3-, and 4-index
tensors. Rows correspond to symmetrizations, columns to antisymmetrizations.
The reduction procedure is not unique, as it depends on the order in which the
indices are combined; this order is indicated by labels 1, 2, 3, ..., p in the boxes
of Young tableaux.
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9.3.1 Definitions

Partition % identical boxes into D subsets, and let \,,,, m = 1,2,..., D, be the
number of boxes in the subsets ordered so that A1 > Ao > ... > A\p > 1. Then
the partition A = [A1, Az, ..., Ap] fulfills 22:1 Am = k. The diagram obtained
by drawing the D rows of boxes on top of each other, left aligned, starting with A ;
at the top, is called a Young diagramY".

Examples:
The ordered partitions for £ = 4 are [4],[3,1],[2,2],[2,1,1] and [1,1,1,1]. The
corresponding Young diagrams are

T ] -

Inserting a number from the set {1,...,n} into every box of a Young diagram
Y, in such a way that numbers increase when reading a column from top to bottom,
and numbers do not decrease when reading a row from left to right, yields a Young
tableau Y. The subscript « labels different tableaux derived from a given Young
diagram, i.e., different admissible ways of inserting the numbers into the boxes.

A standard tableauis a k-box Young tableau constructed by inserting the numbers
1,...,k according to the above rules, but using each number exactly once. For
example, the 4-box Young diagram with partition A = [2, 1, 1] yields three distinct
standard tableaux:

2| 3

1 4]
] A ]
14]

(9.15)

N
[wro]=

An alternative labeling of a Young diagram are Dynkin labels, the list of num-
bers b,,, of columns with m boxes: (b1bs...). Having k& boxes we must have
anzl mb,, = k. For example, the partition [4,2, 1] and the labels (21100 --)
give rise to the same Young diagram, and so do the partition [2, 2] and the labels
(020---).

We define the transpose diagram Y as the Young diagram obtained from Y by
interchanging rows and columns. For example, the transpose of [3, 1] is [2, 1, 1],

i
or, in terms of Dynkin labels, the transpose of (210...) is (1010...).

The Young tableaux are useful for labeling irreps of various groups. We shall use
the following facts (see for instance ref. [ 153]):

ool

1. The k-box Young diagrams label all irreps of the symmetric group S .

2. The standard tableaux of k-box Young diagrams with no more than n rows
label the irreps of GL(n), in particular they label the irreps of U (n).
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3. The standard tableaux of k-box Young diagrams with no more than n — 1
rows label the irreps of SL(n), in particular they label the irreps of SU (n).

In this section, we consider the Young tableaux for reps of S and U (n), while the
case of SU(n) is postponed to section 9.8.

9.3.2 Symmetric group Sy,

The irreps of the symmetric group S, are labeled by the £-box Young diagrams. For
a given Young diagram, the basis vectors of the corresponding irrep can be labeled
by the standard tableaux of Y; consequently the dimension A~ of the irrep is the
number of standard tableaux that can be constructed from the Young diagram Y.
The example (9.15) shows that the irrep A = [2, 1, 1] of Sy is 3-dimensional.

As an alternative to counting standard tableaux, the dimension A v of the irrep of
S} corresponding to the Young diagram Y can be computed easily as

k!

Y|’
where the number | Y| is computed using a “hook” rule: Enter into each box of the
Young diagram the number of boxes below and to the right of the box, including the
box itself. Then | Y| is the product of the numbers in all the boxes. For instance,
| 6/5/3[1]
Y = — |Y|=14]3]1] =6!3. (9.17)
21
The hook rule (9.16) was first proven by Frame, de B. Robinson, and Thrall [ 123].
Various proofs can be found in the literature [ 295, 170, 133, 142, 21]; see also Sagan
[302] and references therein.

We now discuss the regular representation of the symmetric group. The elements
o € Sy, of the symmetric group .S, form a basis of a k!-dimensional vector space V'
of elements

Ay (9.16)

s= Y s,0€V, (9.18)
€Sk
where s,, are the components of a vector s in the given basis. If s € V" has components
(s») and 7 € S, then 7s is an element in V' with components (7s) , = s;-1,. This
action of the group elements on the vector space V' defines an k!-dimensional matrix
representation of the group S, the regular representation.

The regular representation is reducible, and each irrep A appears A  times in the
reduction; A  is the dimension of the subspace V' correspondingto the irrep . This
gives the well-known relation between the order of the symmetric group |S x| = k!
(the dimension of the regular representation) and the dimensions of the irreps,

|Sk| = Z A3

all irreps A

Using (9.16) and the fact that the Young diagrams label the irreps of S, we have

1
1=k e (9.19)
(k)



GroupTheory  PUP Lucy Day version 8.8, March 2, 2008

UNITARY GROUPS 91

where the sum is over all Young diagrams with & boxes. We shall use this relation
to determine the normalization of Young projection operators in appendix B.3.
The reduction of the regular representation of .S gives a completeness relation,

1= Py,
(k)

in terms of projection operators

Py= > Py,.

Y.€Y

The sum is over all standard tableaux derived from the Young diagram Y. Each P v,
projects onto a corresponding invariant subspace Vv, : for each Y there are Ay such
projection operators (corresponding to the Ay possible standard tableaux of the
diagram), and each of these project onto one of the Ay invariant subspaces Vv of
the reduction of the regular representation. It follows that the projection operators
are orthogonal and that they constitute a complete set.

9.3.3 Unitary group U(n)

The irreps of U (n) are labeled by the k-box Young standard tableaux with no more
than n rows. A k-index tensor is represented by a Young diagram with & boxes
— one typically thinks of this as a k-particle state. For U(n), a 1-index tensor has
n-components, so there are n 1-particle states available, and this corresponds to the
n-dimensional fundamental rep labeled by a 1-box Young diagram. There are n 2
2-particle states for U(n), and as we have seen in section 9.1 these split into two
irreps: the symmetric and the antisymmetric. Using Young diagrams, we write the
reduction of the 2-particle system as

D@Dz[D@H. (9.20)

Except for the fully symmetric and the fully antisymmetric irreps, the irreps of the
k-index tensors of U (n) have mixed symmetry. Boxes in a row correspond to indices
that are symmetric under interchanges (symmetric multiparticle states), and boxes
in a column correspond to indices antisymmetric under interchanges (antisymmetric
multiparticle states). Since there are only n labels for the particles, no more than
n particles can be antisymmetrized, and hence only standard tableaux with up to n
rows correspond to irreps of U(n).

The number of standard tableaux A v derived from a Young diagram Y is given in
(9.16). Interms of irreducible tensors, the Young diagram determines the symmetries
of the indices, and the A+ distinct standard tableaux correspond to the independent
ways of combining the indices under these symmetries. This is illustrated in fig-
ure 9.2.

For a given U(n) irrep labeled by some standard tableau of the Young diagram
Y, the basis vectors are labeled by the Young tableaux Y, obtained by inserting
the numbers 1,2, ..., n into Y in the manner described in section 9.3.1. Thus the
dimension of an irrep of U(n) equals the number of such Young tableaux, and we
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note that all irreps with the same Young diagram have the same dimension. For
U(2), the k = 2 Young tableaux of the symmetric and antisymmetric irreps are

[1]1], [1]2], [2][2], and ,

so the symmetric state of U(2) is 3-dimensional and the antisymmetric state is 1-
dimensional, in agreement with the formulas (6.4) and (6.15) for the dimensions of
the symmetry operators. For U (3), the counting of Young tableaux shows that the
symmetric 2-particle irrep is 6-dimensional and the antisymmetric 2-particle irrep
is 3-dimensional, again in agreement with (6.4) and (6.15). In section 9.4.3 we state
and prove a dimension formula for a general irrep of U (n).

9.4 YOUNG PROJECTION OPERATORS

Givenanirrep of U (n) labeled by a k-box standard tableaux Y, we construct the cor-
responding Young projection operator P v in birdtrack notation by identifying each
box in the diagram with a directed line. The operator P v is a block of symmetrizers
to the left of a block of antisymmetrizers, all imposed on the & lines. The blocks of
symmetry operators are dictated by the Young diagram, whereas the attachment of
lines to these operators is specified by the particular standard tableau.

The Kronecker delta is invariant under unitary transformations: for U € U(n),
we have (U1),% 67,U,,® = 6%. Consequently, any combination of Kronecker deltas,
such as a symmetrizer, is invariant under unitary transformations. The symmetry op-
erators constitute a complete set, so any U (n) invariant tensor built from Kronecker
deltas can be expressed in terms of symmetrizers and antisymmetrizers. In particu-
lar, the invariance of the Kronecker delta under U (n) transformations implies that
the same symmetry group operators that project the irreps of .S, also yield the irreps
of U(n).

The simplest examples of Young projection operators are those associated with
the Young tableaux consisting of either one row or one column. The corresponding
Young projection operators are simply the symmetrizers or the antisymmetrizers
respectively. As projection operators for S, the symmetrizer projects onto the 1-
dimensional subspace corresponding to the fully symmetric representation, and the
antisymmetrizer projects onto the fully antisymmetric representation (the alternating
representation).

A Young projection operator for a mixed symmetry Young tableau will here be
constructed by first antisymmetrizing subsets of indices, and then symmetrizing
other subsets of indices; the Young tableau determines which subsets, as will be
explained shortly. Schematically,

Py, —ovi . (9.21)

where the white (black) blob symbolizes a set of (anti)symmetrizers. The nor-
malization constant ay (defined below) ensures that the operators are idempotent,
Py Py, = dwPy,.

This particular form of projection operators is not unique: in section 9.2 we built
3-index tensor Young projection operators that were symmetric under transposition.
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The Young projection operators constructed in this section are particularly conve-
nient for explicit U (n) computations, and another virtue is that we can write down
the projectors explicitly from the standard tableaux, without having to solve a char-
acteristic equation. For multiparticle irreps, the Young projection operators of this
section will generally be different from the ones constructed from characteristic
equations (see sections. 9.1-9.2); however, the operators are equivalent, since the
difference amounts to a choice of basis.

9.4.1 Construction of projection operators

Let Y, be a k-box standard tableau. Arrange a set of symmetrizers corresponding to
the rows in'Y ., and to the right of this arrange a set of antisymmetrizers correspond-
ing to the columnsinY ,. For a Young diagram Y with s rows and ¢ columns we label
the rows Sy, So, ..., S and to the columns A1, A, ..., A;. Each symmetry operator
in Py is associated to a row/column in Y, hence we label a symmetry operator after
the corresponding row/column, for example,

X o ALaplals j
J

S216|7|8/|9

S3 10|11
Let the lines numbered 1 to & enter the symmetrizers as described by the numbers
in the boxes in the standard tableau and connect the set of symmetrizers to the set
of antisymmetrizers in a nonvanishing way, avoiding multiple intermediate lines
prohibited by (6.17). Finally, arrange the lines coming out of the antisymmetrizers
such that if the lines all passed straight through the symmetry operators, they would
exit in the same order as they entered. This ensures that upon expansion of all the
symmetry operators, the identity appears exactly once.

We denote by |S;| or |A;| the length of a row or column, respectively, that is the
number of boxes it contains. Thus |A ;| also denotes the number of lines entering
the antisymmetrizer A;. In the above example we have |S;| = 5, |Az| = 3, etc.

The normalization avy is given by

(T 18ilt) (TTz 1451
Y| ’

where |Y| is related through (9.16) to Ay, the dimension of irrep Y of Sy, and is a
hook rule S; combinatoric number. The normalization depends only on the shape
of the Young diagram, not the particular tableau.

ay = (9.23)

Example: The Young diagram B:D tells us to use one symmetrizer of length
three, one of length one, one antisymmetrizer of length two, and two of length one.
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There are three distinct k-standard arrangements, each corresponding to a projection
operator

arpkc
- D
dnzla<
1 ::QY% (0.25)
-~ D
dnsla<
-« D

where the normalization constant is vy = 3/2 by (9.23). More examples of Young
projection operators are given in section 9.5.

9.4.2 Properties

We prove in appendix B that the above construction yields well defined projection
operators. In particular, the internal connection between the symmetrizers and an-
tisymmetrizers is unique up to an overall sign (proof in appendix B.1). We fix the
overall sign by requiring that when all symmetry operators are expanded, the iden-
tity appears with a positive coefficient. Note that by construction (the lines exit in
the same order as they enter) the identity appears exactly once in the full expansion
of any of the Young projection operators.
We list here the most important properties of the Young projection operators:

1. The Young projection operators are orthogonal: If Y and Z are two distinct
standard tableaux, then Pv Pz = 0 = Pz Py.

2. With the normalization (9.23), the Young projection operators are indeed
projection operators, i.e., they are idempotent: P2, = Pv.

3. For a given k the Young projection operators constitute a complete set such
that 1 = " Py, where the sum is over all standard tableaux Y with & boxes.

The proofs of these properties are given in appendix B.

9.4.3 Dimensionsof U(n) irreps

The dimension dy of a U(n) irrep Y can be computed diagrammatically as the
trace of the corresponding Young projection operator, dy = tr Py. Expanding
the symmetry operators yields a weighted sum of closed-loop diagrams. Each loop
is worth n, and since the identity appears precisely once in the expansion, the
dimension dv of a irrep with a k-box Young tableau Y is a degree & polynomial in
n.

[N

Example: We compute we dimension of the U (n) irrep 2 ‘:

5. >

RGP
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YV S, 2
3\ 2! < <

=;M+M_M_MZMﬁ{n

(9.27)
In practice, this is unnecessarily laborious. The dimension of a U (n) irrep Y is
given by

fx(n)
dy = . (9.28)
Y]
Here fv(n) is a polynomial in n obtained from the Young diagram Y by multiplying
the numbers written in the boxes of Y, according to the following rules:
1. The upper left box contains an n.

2. The numbers in a row increase by one when reading from left to right.

3. The numbers in a column decrease by one when reading from top to bottom.

Hence, if & is the number of boxes in Y, fy(n) is a polynomial in n of degree k.
The dimension formula (9.28) is well known (see for instance ref. [138]).

Example: In the above example with the irrep :1% 2 ‘, we have

b ) _n?—1)
YT 3
in agreement with the diagrammatic trace calculation (9.27).

Example: With Y =[4,2,1], we have

n | n+l n+2‘ n+3‘
fy(n)=|nt| n :nQ(nQ—l)(n2—4)(n+3),
n-2
6/4]2]1]
[Y|=|3]|1 = 144, (9.29)
1]
hence,
do — n?(n? —1)(n? —4)(n + 3)
Yo 144

(9.30)

Using dy = tr Py, the dimension formula (9.28) can be proven diagrammatically
by induction on the number of boxes inthe irrep Y. The proofis given in appendix B.4.
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The polynomial fy (n) has an intuitive interpretation in terms of strand colorings
of the diagram for tr P+. Draw the trace of the Young projection operator. Each
line is a strand, a closed line, which we draw as passing straight through all of the
symmetry operators. For a k-box Young diagram, there are k strands. Given the
following set of rules, we count the number of ways to color the k strands using n
colors. The top strand (corresponding to the leftmost box in the first row of Y) may
be colored in n ways. Color the rest of the strands according to the following rules:

1. If a path, which could be colored in m ways, enters an antisymmetrizer, the
lines below it can be colored inm — 1, m — 2, ... ways.

2. If a path, which could be colored in m ways, enters a symmetrizer, the lines
below it can be colored inm + 1, m + 2, ... ways.

Using this coloring algorithm, the number of ways to color the strands of the
diagram is fv(n).

23|16
Example: For Y = 5}7} ‘, the strand diagram is

(][]

(9.31)

Each strand is labeled by the number of admissible colorings. Multiplying these
numbers and including the factor 1/|Y]|, we find

dy=(n—2)(n—1)n2n+1)2(n+2)(n+3) 2]

~n(n+1)(n+3)
S 2632(n—3)

in agreement with (9.28).

9.5 REDUCTION OF TENSOR PRODUCTS

We now work out several explicit examples of decomposition of direct products of
Young diagrams/tableaux in order to motivate the general rules for decomposition
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Y, Py, dvy,
n(n+1)(n+2)
ZE e
4
R
L9 n(ngfl)
1]3] 4 !
2 3
I (n72)énfl)n
®[2]® — n’

Table 9.1 Reduction of 3-index tensor. The last row shows the direct sum of the Young
tableaux, the sum of the dimensions of the irreps adding up to »*, and the sum of
the projection operators adding up to the identity as verification of completeness
(3.52).

of direct products stated below, in section 9.5.1. We have already treated the decom-
position of the 2-index tensor into the symmetric and the antisymmetric tensors, but
we shall reconsider the 3-index tensor, since the projection operators are different
from those derived from the characteristic equations in section 9.2.

The 3-index tensor reduces to

Me@sE- (Do) «H

=[1[23]0f 2l : slaly). (9.32)

-

The corresponding dimensions and Young projection operators are given in table 9.1.
For simplicity, we neglect the arrows on the lines where this leads to no confusion.

The Young projection operators are orthogonal by inspection. We check complete-
ness by a computation. In the sum of the fully symmetric and the fully antisymmetric
tensors, all the odd permutations cancel, and we are left with

== =)

Expanding the two tensors of mixed symmetry, we obtain

e
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Adding the two equations we get

T St

verifying the completeness relation.

For 4-index tensors the decomposition is performed as in the 3-index case, result-
ing in table 9.2.

Acting with any permutation on the fully symmetric or antisymmetric projection
operators gives +1 times the projection operator (see (6.8) and (6.18)). For projection
operators of mixed symmetry the action of a permutation is not as simple, because
the permutations will mix the spaces corresponding to the distinct tableaux. Here
we shall need only the action of a permutation within a 3n-; symbol, and, as we
shall show below, in this case the result will again be simple, a factor &1 or 0.

9.5.1 Reduction of direct products

We state the rules for general decompositions of direct products such as (9.20) in
terms of Young diagrams:

Draw the two diagrams next to each other and place in each box of the second
diagramana;, 7 = 1, ..., k, such that the boxes in the first row all have a in them,
second row boxes have as in them, etc. The boxes of the second diagram are now
added to the first diagram to create new diagrams according to the following rules:

1. Each diagram must be a Young diagram.

2. The number of boxes in the new diagram must be equal to the sum of the
number of boxes in the two initial diagrams.

3. For U(n) no diagram has more than n rows.

4. Making a journey through the diagram starting with the top row and entering
each row from the right, at any point the number of @ ;’s encountered in any
of the attached boxes must not exceed the number of previously encountered
ai—1’S.

5. The numbers must not increase when reading across a row from left to right.
6. The numbers must decrease when reading a column from top to bottom.

Rules 4-6 ensure that states that were previously symmetrized are not antisym-
metrized in the product, and vice versa. Also, the rules prevent counting the same
state twice.

For example, consider the direct product of the partitions [3] and [2, 1]. For U (n)
with n > 3 we have

[ ] |

a; al‘ ‘ ‘a1‘a1‘ ‘al‘
= a aila
D:‘:‘® ap ay @ a1l az D] a1 @ |a|a1 s

— — az az

while for n = 2 we have

T e = e LT
a, T ay ai|az ’
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Y, PYG, dYa,
n(n+1)(n+2)(n+3)
== el ()

[y

3] 8
l 2

[N

[N

[1]e[2]o[s]e[4]

n

112 4
n’(n?-1)
12
113 4
2[4 3
1]2] 3
13 2
4]
1]3] 5 o
12 5% (n=2)(n-in(n+1)
14]
114] s
12 2
13]
24

Table 9.2 Reduction of 4-index tensors. Note the symmetry under n < —n.
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As a check that a decomposition is correct, one can compute the dimensions for
the product of irreps on the LHS and the sums of the irreps on the RHS to see that
they match. Methods for calculating the dimension of a U (n) irreps are discussed
in section 9.4.3.

9.6 U(n) RECOUPLING RELATIONS

For U(n) (as opposed to SU (n); see section 9.8) we have no antiparticles, so in
recoupling relations the total particle number is conserved. Consider as an example
the step-by-step reduction of a 5-particle state in terms of the Young projection
operators:

e X ]
== = gam=;
—> X,z =»—  W,X.Z
e [ s s
= > EHAHE
W, XY ,Z -

More generally, we can visualize any sequence of U (n) pairwise Clebsch-Gordan
reductions as a flow with lines joining into thicker and thicker projection operators,
always ending in a maximal P that spans across all lines. In the clebsches notation
of section 5.1, this can be redrawn more compactly as

>—C

— Y3 -y 3. ¢
—— 527 C &<

X X
N %
= z Z .
W W
W,X,Y,Z

The trace of each term in the final sum of the 5-particle state is a 12-j symbol of

the form
” ) (9.34)
(O

w
In the trace (9.34) we can use the idempotency of the projection operators to double
the maximal Young projection operator P v, and sandwich by it all smaller projection
operators:

j

Hi

R 63

From uniqueness of connection between the symmetry operators (see appendix B.1),
we have for any permutation o € S:

IHI C—m, , (9.36)
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where m, = 0, £1. Expressions such as (9.35) can be evaluated by expanding the
projection operators Py, Px, Pz and determining the value of m, of (9.36) for
each permutation o of the expansion. The result is

X]
% -. EE = M(Y;W,X, Z)7 (9.37)

where the factor M (Y; W, X, Z) doesnot depend on n and is determined by a purely
symmetric group calculation. Examples follow.

9.7 U(n) 3n-j SYMBOLS
In this section, we construct U (n) 3-j and 6-5 symbols using the Young projection

operators, and we give explicit examples of their evaluation. Sum rules for 3-5’s and
6-7’s are derived in section 9.7.3.

9.7.1 3-j symbols

Let X, Y, and Z be irreps of U (n). In terms of the Young projection operators P x,
Py, and Py, a U(n) 3-vertex (5.4) is obtained by tying together the three Young

projection operators,
x x5 [
Y = g vk . (9.38)
z =

Since there are no antiparticles, the construction requires kx + kz = ky.
A 3-j coefficient constructed from the vertex (9.38) is then

(9.39)

As an example, take

X = 4 5\_

Then

M -dy, (9.40)
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where M = 1 here. Below we derive that d+ (the dimension of the irrep Y) is indeed
the value of this 3-5 symbol.

In principle the value of a 3-j symbol (9.39) can be computed by expanding
out all symmetry operators, but that is not recommended as the number of terms
in such expansions grows combinatorially with the total number of boxes in the
Young diagram Y. One can do a little better by carefully selecting certain symmetry
operators to expand. Then one simplifies the resulting diagrams using rules such as
(6.7),(6.8), (6.17), and (6.18) before expanding more symmetry operators. However,
a much simpler method exploits (9.36) and leads to the answer — in the case of
(9.40) itis dy = (n* — 1)n*(n + 1)(n + 2)/144 — much faster.

The idea for evaluating a 3-5 symbol (9.39) using (9.36) is to expand the projec-
tions Px and Pz and determine the value of m,, in (9.36) for each permutation o
of the expansion. As an example, consider the 3-5 symbol (9.40). With Py as in
(9.40) we find

o = X = >
e = X = ¢
mg®1 1 0 1 —]_
S - -
Mige 1 -1 0 -1
SO
Po-isl - H= - 3+ 2 - >¢)
Px=Pu®1=%{§ - =+ = - i}
MPy;Px) = 1 - 0o o+ 1 - (-1}
P;=13Py = %{E — § + g - ;}
M(Py;Pyz) = {1 - (-1 + 0 - (=D}
and hence

2 I I
= (Z) axaz kez = kez s

and the value of the 3-5 is dv as claimed in (9.40). That the eigenvalue happens to
be 1 is an accident — in tabulations of 3-5 symbols [ 112] it takes a range of values.

The relation (9.36) implies that the value of any U(n) 3-j symbol (9.39) is
M(Y;X,Z)dy,where dy is the dimension of the maximal irrep Y. Again we remark
that M (Y; X, Z) is independent of n.
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9.7.2 6-j symbols
A general U(n) 6-j symbol has form

(9.41)

Using the relation (9.36) we immediately see that
X U
= Mdy, (9.42)
Y

where M is a pure symmetric group S, number, independent of U (n); it is sur-
prising that the only vestige of U(n) is the fact that the value of a 6-5 symbol is
proportional to the dimension d~ of its largest projection operator.

Example: Consider the 6-5 constructed from the Young tableaux

u =P ovean@m W=,
— 1] 3]

_ 3] _ Y

X = Y_%, Z = o

Using the idempotency we can double the projection P+ and sandwich the other
operators, as in (9.35). Several terms cancel in the expansion of the sandwiched
operator, and we are left with

1= g >< j—

@l:.:_ﬁ{:_f_:_x

Mo +1 0 ~1 0
>< g

=X x X

0 —1 0 +1

We have listed the symmetry factors m of (9.36) for each of the permutations o
sandwiched between the projection operators P v. We find that in this example the
symmetric group factor M of (9.42) is

4 1
AfzﬂaUavO&szxazzg,

so the value of the 6-j is

X . n(n2—1)(n—2).

4!

— Zdy =
3Y
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The method generalizes to evaluations of any 3n-j symbol of U (n) .

Challenge: We have seen that there is a coloring algorithm for the dimensionality
of the Young projection operators. Open question: Find a coloring algorithm for the
3-j’sand 6-5’s of SU(n).

9.7.3 Sum rules

Let Y be a standard tableau with kv boxes, and let A be the set of all standard
tableaux with one or more boxes (this excludes the trivial £ = 0 representation).
Then the 3-5 symbols obey the sum rule

> = (ky —1)dy. (9.43)

X,ZeN 2

The sum is finite, because the 3-5 is nonvanishing only if the number of boxes in X
and Z add up to kv, and this happens only for a finite number of tableaux.

To prove the 3-7 sum rule (9.43), recall that the Young projection operators con-
stitute a complete set, >y, Px = 1, where 1 is the [k x k] unit matrix and A,
the set of all standard tableaux of Young diagrams with k& boxes. Hence:

= > dy = (ky —1)dy.

kx=1

The sum rule offers a useful cross-check on tabulations of 3-5 values.
There is a similar sum rule for the 6-5 symbols:

X U
1
> =5 by = D)(ky —2)dy . (9.44)
X,Z,U,V,WEA y

Referring to the 6-5 (9.41), let ky be the number of boxes in the Young diagram U,
kx be the number of boxes in X, etc.

Let ky be given. From (9.41) we see that kx takes values between 1 and ky — 2,
and k takes values between 2 and ky — 1, subject to the constraint kx + kz = ky.
We now sum over all tableaux U, V, and W keeping kv, kx, and k7 fixed. Note that
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kv can take values 1, . . ., kz — 1. Using completeness, we find
X U ky—1 X u
U,V,WeA ¥ kv=1 VGAkV WeAkZ_kV UEAkY—kV Y

Now sum over all tableaux X and Z to find

X U ky —1 VA
> =D (k=1 3, D,
X,Z,U,V,WEA ¥ kz=2 ZEAky, XEApy —1y X

:%(ky ~D(ky — 2)dy

verifying the sum rule (9.44) for 6-5 symbols.

9.8 SU(n) AND THE ADJOINT REP

The SU(n) group elements satisfy det G = 1, so SU(n) has an additional in-
variant, the Levi-Civita tensor €q,a,...a, = Ga, 1 Gay® ++ Ga, “€atay...ar - ThE
diagrammatic notation for the Levi-Civita tensors was introduced in (6.27).

While the irreps of U (n) are labeled by the standard tableaux with no more than
n rows (see section 9.3), the standard tableaux with a maximum of n — 1 rows label
the irreps of SU(n). The reason is that in SU(n), a column of length » can be
removed from any diagram by contraction with the Levi-Civita tensor (6.27). For
example, for SU (4)

]
. ‘ ‘. (9.45)

Standard tableaux that differ only by columns of length n correspond to equivalent
irreps. Hence, for the standard tableaux labeling irreps of SU (n), the highest column
is of height n — 1, which is also the rank of SU(n). A rep of SU(n), or A, _;
in the Cartan classification (table 7.6) is characterized by n — 1 Dynkin labels
b1bs ... b,—1. The corresponding Young diagram (defined in section 9.3.1) is then
given by (b1bs...b,-100...), 0r (bybs...b,_1) for short.

For SU(n) a column with k& boxes (antisymmetrization of & covariant indices)
can be converted by contraction with the Levi-Civita tensor into a column of (n — k)
boxes (corresponding to (n — k) contravariant indices). This operation associates
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with each diagram a conjugate diagram. Thus the conjugate of a SU(n) Young
diagram Y is constructed from the missing pieces needed to complete the rectangle
of n rows,

SU(5) : ~n : (9.46)

To find the conjugate diagram, add squares below the diagram of Y such that the
resulting figure is a rectangle with height n and width of the top row in Y. Remove
the squares corresponding to Y and rotate the rest by 180 degrees. The result is the
conjugate diagram of Y. For example, for SU(6) the irrep (20110) has (01102) as

its conjugate rep:

SU(6) y : (9.47)

In general, the SU (n) reps (b1bs...b,—1) and (b,—1 ...b2by) are conjugate. For
example, (10...0) stands for the defining rep, and its conjugate is (00...01), i.e,
a column of n — 1 boxes.

The Levi-Civitatensor converts an antisymmetrized collection of n—1 “in”-indices
into 1 “out”-index, or, in other words, it converts an (n—1)-particle state into a single
antiparticle state. We use [ ]to denote the single antiparticle state; it is the conjugate
of the fundamental representation [ | single particle state. For example, for SU(3)
we have

(10) =[] = (20)=[ 1] =6
(1= =3 (02)=| | =B (9.48)
an=HJ=s @)=L =15.

The product of the fundamental rep [ ] and the conjugate rep [ ] of SU(n) de-
composes into a singlet and the adjoint representation:

|
D [ }n—l 1 D M }n—l

n - n = n - n :1—|—(n72—1).
Note that the conjugate of the diagram for the adjoint is again the adjoint.

Using the construction of section 9.4, the birdtrack Young projection operator for
the adjoint representation A can be written

0 e [
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Using P 4 and the definition (9.38) of the 3-vertex, SU(n) group theory weights
involving quarks, antiquarks, and gluons can be calculated by expansion of the
symmetry operators or by application of the recoupling relation. For this reason, we
prefer to keep the conjugate reps conjugate, rather than replacing them by columns
of (n — 1) defining reps, as this will give us SU (n) expressions valid for any 7.

9.9 AN APPLICATION OF THE NEGATIVE DIMENSIONALITY
THEOREM

An SU (n) invariant scalar is a fully contracted object (vacuum bubble) consisting
of Kronecker deltas and Levi-Civita symbols. Since there are no external legs, the
Levi-Civitas appear only in pairs, making it possible to combine them into antisym-
metrizers. In the birdtrack notation, an SU (n) invariant scalar is therefore a vacuum
bubble graph built only from symmetrizers and antisymmetrizers.

The negative dimensionality theorem for SU (n) states that for any SU (n) invari-
ant scalar exchanging symmetrizers and antisymmetrizers is equivalent to replacing
n by —n:

SU(n) = ST(-n) , (9.49)

where the bar on SU indicates transposition, i.e., exchange of symmetrizations and
antisymmetrizations. The theorem also applies to U () invariant scalars, since the
only difference between U (n) and SU (n) is the invariance of the Levi-Civita tensor
in SU (n). The proof of this theorem is given in chapter 13.

We can apply the negative dimensionality theorem to computations of the dimen-
sions of the U(n) irreps, dy = tr Py. Taking the transpose of a Young diagram
interchanges rows and columns, and it is therefore equivalent to interchanging the
symmetrizers and antisymmetrizers in tr Py. The dimension of the irrep corre-
sponding to the transpose Young diagram Y ¢ can then be related to the dimension of
theirrep labeled by Y as dy:(n) = dy (—n) by the negative dimensionality theorem.

Example: [3, 1] is the transpose of [2, 1, 1],

t
12[3]\ _ éz‘
| 4] al

Note the n — —n duality in the dimension formulas for these and other tableaux
(table 9.2).

Now for standard tableaux X, Y, and Z, compare the diagram of the 3-j constructed
from X, Y, and Z to that constructed from X ¢, Z*, and Y. The diagrams are related by
areflection in a vertical line, reversal of all the arrows on the lines, and interchange of
symmetrizers and antisymmetrizers. The first two operations do not change the value
of the diagram, and by the negative dimensionality theorem the values of two 3-5’s
are related by n < —n (and possibly an overall sign; this sign is fixed by requiring
that the highest power of n comes with a positive coefficient). In tabulations, it
suffices to calculate approximately half of all 3-5’s. Furthermore, the 3-5 sum rule
(9.43) provides a cross-check.
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The two 6-5 symbols

are related by a reflection in a vertical line, reversal of all the arrows on the lines, and
interchange of symmetrizers and antisymmetrizers — this can be seen by writing
out the 6-5 symbols in terms of the Young projection operators as in (9.41). By the
negative dimensionality theorem, the values of the two 6-; symbols are therefore
related by n < —n.

9.10 SU(n) MIXED TWO-INDEX TENSORS

We now return to the construction of projection operators from characteristic equa-
tions. Consider mixed tensors ¢ ® G(?) € V ® V. The Kronecker delta invariants
are the same as in section 9.1, but now they are drawn differently (we are looking
at a “cross channel”):

—_——
identity: 1=1%¢% =056 = ,

—_——
trace: T=T75=0565= D C

The T matrix satisfies a trivial characteristic equation

T? = =nT, (9.52)
DOC

i.e, T(T —nl) = 0, with roots A\; = 0, A2 = n. The corresponding projection
operators (3.48) are

P1:%T: %D C (9.53)
Pom1-T= ) -« (9.54)

with dimensions d; = trP; = 1, dy = tr P, = n? — 1. P, is the projection
operator for the adjoint rep of SU(n). In this way, the invariant matrix T has
resolved the space of tensors x¢ € V @ V into a singlet and a traceless part,

(9.51)

1 1
Plx = —;pc§b PQ;C = xZ — (—{Eg) 53 . (955)
n

cra
n

Both projection operators leave §; invariant, so the generators of the unitary trans-
formations are given by their sum

U(n) : %}C = : (9.56)

and the dimension of the U (n) adjointrepis N = tr P 4 = 625¢ = n?. If we extend
the list of primitive invariants from the Kronecker delta to the Kronecker delta and
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the Levi-Civita tensor (6.27), the singlet subspace does not satisfy the invariance
condition (6.56)

%
£0.

For the traceless subspace (9.54), the invariance condition is

|

1
— = —0.
n

Thisisthe same relation as (6.25), as can be shown by expanding the antisymmetriza-
tion operator using (6.19), so the invariance condition is satisfied. The adjoint rep

is given by
oL e
SU(n): a}c_/ N n) C
L (s ()t =gy — Sopsd (9.57)

a n
The special unitary group SU (n) is, by definition, the invariance group of the Levi-
Civita tensor (hence “special”) and the Kronecker delta (hence “unitary”), and its
dimension is N = n? — 1. The defining rep Dynkin index follows from (7.27) and
(7.28)

(=t =2n (9.58)
(This was evaluated in the example of section 2.2.) The Dynkin index for the singlet
rep (9.55) vanishes identically, as it does for any singlet rep.

9.11 SU(n) MIXED DEFINING @ ADJOINT TENSORS

In this and the following section we generalize the reduction by invariant matrices
to spaces other than the defining rep. Such techniques will be very useful later on, in
our construction of the exceptional Lie groups. We consider the defining ® adjoint
tensor space as a projection from V ® V @ V space:

= {} . (9.59)

-
< <

The following two invariant matrices actingon VV 2@V space contract or interchange

defining rep indices:
R= g 2 (9.60)
Q= g 2 - K (9.61)
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Dynkin labels (10...1)® (10...) = (10...) @ (200...01) @ (010...01)

| [ ]

1= 1 + +
Dimensions: (n®>—1n = n 4 2oDod2)  ad o)

: . n?-1 __ (n+2)(3n—1) (n—2)(3n+1)

Indices: n+2=-l = L4 o + o
SU(3) example:
Dimensions: 8-3 = 3 + 15 + 6
Indices: 13/3 = 1/6 + 10/3 + 5/6
SU(4) example:
Dimensions: 15-4 = 4 + 36 + 20
Indices: 47/8 = 1/8 + 33/8 + 13/8

Projection operators:

P, = 2

n2—1
_ 1 _ 1
P, =} AN
1 _ _ 1
Po=t{_ - 7S e

Table 9.3 SU(n) V ® A Clebsch-Gordan series.
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R projects onto the defining space and satisfies the characteristic equation

2 _
R2:>—Q—<=” . 'R (9.62)

The corresponding projection operators (3.48) are

n
Pl:n2—1>_(_<’
P, — >-<—< (9.63)
—_— nc -1

Q takes a single eigenvalue on the P subspace

1
QR= ;< /=-"R. (9.64)

Q?2 is computed by inserting the adjoint rep projection operator (9.57):

QQZM:i—%H. (9.65)

The projection on the P, subspace yields the characteristic equation

P,(Q°-1)=0, (9.66)

with the associated projection operators

P, %P4(1 +Q) (9.67)

:%{—<—_n2n—1>_(_<}{ < +7<‘}
S S
P3=%P4(1—Q)

I 1
EAEEANEr e 05

The dimensions of the two subspaces are computed by taking traces of their projec-

tion operators:
L [CO 1

dQZtl"PQZ PZ = — + —
OO O o
:% ("N + N = N/(n+1)) = %(n ~n(n +2) (9.69)

and similarly for ds. This is tabulated in table 9.3.
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9.11.1 Algebraof invariants

Mostly for illustration purposes, let us now perform the same calculation by utilizing
the algebra of invariants method outlined in section 3.4. A possible basis set, picked
fromthe V ® A — V ® A linearly independent tree invariants, consists of

(e,R,Q)z(_(_, ;2 K) (9.70)

The multiplication table (3.42) has been worked out in (9.62), (9.64), and (9.65).
For example, the ()3 matrix rep for Qt is

e 0 0 1\ [e
> (Q)s"t, =Q (R) = (o —1/n o) (R) (9.71)
V€T Q 1 =1/n 0 Q

and similarly for R. In this way, we obtain the [3 x 3] matrix rep of the algebra of
invariants

100 0 1 0 0o 0 1
{e,R,Q} = 010],{on-20],[{0-1/n0 . (9.72)
001 0 —1/n 0 1 —1/n 0

From (9.62) we already know that the eigenvalues of R are {0,0,n — 1/n}. The
last eigenvalue yields the projection operator P, = (n —1/n)~*, but the projection
operator P4 yields a 2-dimensional degenerate rep. Q has three distinct eigenvalues
{—1/n,1, =1} and is thus more interesting; the corresponding projection operators
fully decompose the V' ® A space. The — 1/n eigenspace projection operator is
again P, but P is split into two subspaces, verifying (9.68) and (9.67):

Q+1)(Q++1) 1 1
D= a1/ _5(1+Q_n—+1R>

Q-1H@Q+;1) 1 1
Ps= (-1 —1)(-1+1/n) 2 (1 Q== 1R) ' (®.73)
We see that the matrix rep of the algebra of invariants is an alternative tool for
implementing the full reduction, perhaps easier to implement as a computation than
an out and out birdtracks evaluation.
To summarize, the invariant matrix R. projects out the 1-particle subspace P ;.
The particle exchange matrix Q splits the remainder into the irreducible V' @ A
subspaces P, and Ps.

9.12 SU(n) TWO-INDEX ADJOINT TENSORS

Consider the Kronecker product of two adjoint reps. We want to reduce the space
oftensors z;; € A® A, withi =1,2,... N. The first decomposition is the obvious
decomposition (9.4) into the symmetric and antisymmetric subspaces,

1

= S + A
Banbis
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The symmetric part can be split into the trace and the traceless part, as in (9.54):

1
S=—T+P
N + Pg

o G4 G e

Further decomposition can be effected by studying invariant matrices in the V' 2 ®V2
space. We can visualize the relation between A @ A and V2 ® v’ by the identity

: - {}: . (9.76)

This suggests the introduction of two invariant matrices:

Q= (9.77)

R-— ég :}2}:{)( (9.78)

R can be decomposed by (9.54) into a singlet and the adjoint rep

M + 3 (9.79)

= R’ + 1T,

The singlet has already been taken into account in the trace-traceless tensor decom-
position (9.75). The R’ projection on the antisymmetric subspace is

By the Lie algebra (4.47),

1 n n
ARA? = oow {3 =% e« ~TARA 9.81
(AR'A? = L - ARAL (98D

and the associated projection operators,

1 1
(Ps)ijh = %Cijmcmlk = %>—<
P,= I - %H (9.82)

split the antisymmetric subspace into the adjoint rep and a remainder. On the sym-
metric subspace (9.75), R’ actsas PsR'Pg. AsR/T = 0, thisis the same as SR’S.

Consider

R
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We compute

S IRONOE S ONOR
SONEOSS { i }
1 1 1
=3 Q T + ﬂ} n
1 2
=5 {n®—4} ) (9.83)
Hence, SR’S satisfies the characteristic equation
’ n?—4 /
(SR S — ) SR'S=0. (9.84)

The associated projection operators split up the traceless symmetric subspace (9.75)
into the adjoint rep and a remainder:

2n , 2n
PQ_n2—4SRS_n2—4j:[:O—Qj:[:’ (9.85)

Py =Pg—Ps5. (9.86)
The Clebsch-Gordan coefficients for P, are known as the Gell-Mann d;;, ten-

sors [137]:
| 1 1
k== = ~dip . 9.87
O ©87)

For SU(3), P is the projection operator (8 ® 8) symmetric — 8. Interms of d ;. ’s,

we have
n n
( 2) J,ke 2(712 — 4)d J dmke 2(712 — 4) >: :< ( 8)

with the normalization

2(n? —4)
disndije = —4{ p—= LT (9.89)

Next we turn to the decomposition of the symmetric subspace induced by matrix Q
(9.77). Q commutes with S:

~8 18 8]

=SQ =SQsS. (9.90)
On the 1-dimensional subspace in (9.75), it takes eigenvalue —1/n

1
TQ:) @:—ET; (9.91)

so Q also commutes with the projection operator P g from (9.75),

QPs =Q (s - 1_ 1T) =PsQ. (9.92)

n2
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Q2 is easily evaluated by inserting the adjoint rep projection operators (9.54)

o) e

Projecting on the traceless symmetric subspace gives

Pg <Q2 ) =0. (9.94)
On the P, subspace Q gives

Bﬂz}%{%}%ﬂ}

21O 059

Hence, Q has a single eigenvalue,
2
QP; = ——P», (9.96)
n
and does not decompose the P, subspace; this is as it should be, as P, is the adjoint
rep and is thus irreducible. On P subspace (9.93) yields a characteristic equation

Py (Q*—1)=0,
with the associated projection operators
P; :—PQ, 1-Q (9.97)
w1 C
(n— n(n—1) ’
Py= (1+Q) = Ps -P)(1+Q)

Ps-P;+S

)

s+sqQ-""*p ! > (9.98)

HER j]g ) ()

l\:zl)—l N)l»—lml»—t

/—’h/\/_\
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This completes the reduction of the symmetric subspace in (9.74). As in (9.90), Q
commutes with A

QA =AQ=AQA. (9.99)
On the antisymmetric subspace, the Q? equation (9.93) becomes
0=A<Q2—1+3R), A=AQ*-1-P,). (9.100)
n

The adjoint rep (9.82) should be irreducible. Indeed, it follows from the Lie algebra,
that Q has zero eigenvalue for any simple group:

P,Q— CLA}@ —0. (9.101)

On the remaining antisymmetric subspace P, (9.100) yields the characteristic equa-
tion

P.(Q*-1)=0, (9.102)
with corresponding projection operators
1 1
Pe=5Pa(1+Q)=;A(1+Q~Pu)
1 1
:5{ +8I_@H} . (9.103)

P;=-P,(1-Q

1y
3P
1
:5{ I } (9.104)

To compute the dimensions of these reps we need

tr AQ = :% g @ =0, (9.105)

so both reps have the same dimension

2 2
d6=d7=%(trA—trPA)Z%{W—ng—l}

— W ) (9.106)

Indeed, the two reps are conjugate reps. The identity

1318

obtained by interchanging the two left adjoint rep legs, implies that the projection
operators (9.103) and (9.104) are related by the reversal of the loop arrow. This is
the birdtrack notation for complex conjugation (see section 4.1).

This decomposition of two SU (n) adjoint reps is summarized in table 9.4.
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9.13 CASIMIRSFOR THE FULLY SYMMETRIC REPS OF SU (n)

In this section we carry out a few explicit birdtrack casimir evaluations.
Consider the fully symmetric Kronecker product of p particle reps. Its Dynkin
label (defined on page 106) is (p,0,0...0), and the corresponding Young tableau

isarow of p boxes: | [ [ --- [P]. The projection operator is given by (6.4)

: p
PSZSZE E:_:z,
1

and the generator (4.40) in the symmetric rep is

J

Ti:pi: E (9.108)

To compute the casimirs, we introduce matrices:

R

Xl=g;(T")! = a~——€n. (9.109)
We next compute the powers of X:

O =
x=p{ || |l +3-0dpd L+ o-ve-23ER )
+o0- 00 -DI ST+ - Do -2 - 3)%}

X4:p

: (9.110)
The tr X* are then
tr X0 =d, (" TP 1) (see (6.13)) (9.111)
p
tr X =0 (semisimplicity) (9.112)
X2 PPN o (9.113)
n(n+1)
ds p—1 _(p—-1)p-2)
X3=25(1 2 z3
b np< e i)t ) )
| .
_nEp)n+2p) 5, pnEp)n+2) o (9.114)

(n+2)l(p—1)

-1 —1p—-2 —1p—-2p-—-3
trxt=dl (14722 fppb— P2 PP 2D tr ot
n n+1 n+1ln+2 n+ln+2n+3

I Akl <3+6p_2 +3p_2p_3> (ter)Q} . (9.115)

n+1 n+2 n+2n+3
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The quadratic Dynkin index is given by the ratio of tr X 2 and tr 4 X ? for the adjoint
rep (7.30):

tr X2 dyp(p+n)
tra X2  2n2(n+1)°

0y = (9.116)

To take a random example from the Patera-Sankoff tables [273], the SU(6) rep
dimension and Dynkin index

rep dim 2

(0,00,0,0,14) 11628 6460 (9.117)

check with the above expressions.

9.14 SU(n), U(n) EQUIVALENCE IN ADJOINT REP
The following simple observation speeds up evaluation of pure adjoint rep group-

theoretic weights (3n-j)’s for SU (n): The adjoint rep weights for U (n) and SU (n)
are identical. This means that we can use the U (n) adjoint projection operator

Uln) : }{ - X (9.118)

instead of the traceless SU (n) projection operator (9.54), and halve the number of
terms in the expansion of each adjoint line.

Proof: Any internal adjoint line connects two C';;1’s:

The trace part of (9.54) cancels on each line; hence, it does not contribute to the pure
adjoint rep diagrams. As an example, we reevaluate the adjoint quadratic casimir

C’,ﬂV:@:Q@:Q{@—Z@}.

Now substitute the U (n) adjoint projection operator (9.118):

CAN—2{8—2'}—27777 -1),

in agreement with the first exercise of section 2.2.
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9.15 SOURCES

Sections 9.3-9.9 of this chapter are based on Elvang et al. [ 113]. The introduction to
the Young tableaux folows ref. [113], which, in turn, is based on Lichtenberg [214]
and Hamermesh [153]. The rules for reduction of direct products follow Lichten-
berg [214], stated here as in ref. [112]. The construction of the Young projection
operators directly from the Young tableaux is described in van der Waerden [ 334],
who ascribes the idea to von Neumann.

R. Penrose’s papers are the first (known to the authors) to cast the Young pro-
jection operators into a diagrammatic form. Here we use Penrose diagrammatic
notation for symmetrization operators [ 280], Levi-Civita tensors [282], and “strand
networks” [281]. For several specific, few-particle examples, diagrammatic Young
projection operators were constructed by Canning [41], Mandula [227], and Sted-
man [318]. A diagrammatic construction of the U(n) Young projection operators
for any Young tableau was outlined in the unpublished ref. [ 186], without proofs;
the proofs of appendix B that the Young projection operators so constructed are
unique were given in ref. [112].
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Chapter Ten

Orthogonal groups

Orthogonal group SO(n) is the group of transformations that leaves invariant a
symmetric quadratic form (q, q¢) = g,.¢"¢”

gwj:guu:u—(—o—)—v /1,,1/21,2,...,77/. (101)
If (¢, ¢) is an invariant, so is its complex conjugate (¢, ¢)* = ¢*q,q., and
g‘uu = gv,u = u —)—o—(— v (102)

is also an invariant tensor. The matrix A}, = g,,,g”" must be proportional to unity, as
otherwise its characteristic equation would decompose the defining n-dimensional
rep. A convenient normalization is
Iuog”’ =0,
————— = ——. (10.3)
As the indices can be raised and lowered at will, nothing is gained by keeping the

arrows. Our convention will be to perform all contractions with metric tensors with
upper indices and omit the arrows and the open dots:

g = v. (10.4)
All other tensors will have lower indices. For example, Lie group generators (T';),,”
from (4.31) will be replaced by

=J*—’-—>(Ti)WZJ-'

The invariance condition (4.36) for the metric tensor

J_HL

79or + (Ti), ° 9o =0 (10.5)
becomes, in this convention, a statement that the SO(n) generators are antisymmet-
ric:

L
(T3) == (T3, - (10.6)
Our analysis of the reps of SO(n) will depend only on the existence of a sym-
metric metric tensor and its invertability, and not on its eigenvalues. The resulting
Clebsch-Gordan series applies both to the compact SO(n) and noncompact orthog-
onal groups, such as the Minkowski group SO(1, 3). In this chapter, we outline the
construction of SO(n) tensor reps. Spinor reps will be taken up in chapter 11.
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10.1 TWO-INDEX TENSORS

In section 9.1 we have decomposed the SU (n) 2-index tensors into symmetric and
antisymmetric parts. For SO(n), the rule is to lower all indices on all tensors, and
the symmetric state projection operator (9.2) is replaced by

Suv,ps = Gpp' 9o’ Spvs”

1
(gwgw + GupGvo)

T

From now on, we drop all arrows and ¢g#*’s and write (9.4) as

:I+I

1 1
GuoGvp = i(g;wgup + gupguo) + i(g;wgw) - gupQUU) . (10.7)
The new invariant, specific to SO(n), is the index contraction:
Tp,z/,po = GuvYpo 5 T= ) C . (108)

The characteristic equation for the trace invariant

- ) O C —nT (10.9)

yields the trace and the traceless part projection operators (9.53), (9.54). As T is
symmetric, ST = T, only the symmetric subspace is resolved by this invariant.
The final decomposition of SO(n) 2-index tensors is

traceless symmetric:

1 1 ] [ 1
(P2)uu,pa = 5 (guagup + gupguo) - Eguugpa = - ED C )

(10.10)
singlet: (P1)yup0 = g,wg,m= ) C. (10.11)

. . 1
antisymmetric: (Ps),u,p0 = 5 (Yo Gvp — GupGvo) = I . (10.12)

The adjoint rep (9.57) of SU(n) is decomposed into the traceless symmetric and
the antisymmetric parts. To determine which of them is the new adjoint rep, we sub-
stitute them into the invariance condition (10.5). Only the antisymmetric projection
operator satisfies the invariance condition

J-L,bL

so the adjoint rep projection operator for SO(n

E}{ - I : (10.13)
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Young tableaux [ Ix[] = o + H + [1]

Dynkin labels  (10...) x (10...) = (00...) + (010...) + (20...)
Dimensions n? = 1 + ooy (nt2)n=1)

Dynkin indices 2n—— = n+2

0 + 1+ nt2
Projectors =1 C ¥ I + { _ %D C}

Table 10.1 SO(n) Clebsch-Gordan series for V@ V.

The dimension of SO(n) is given by the trace of the adjoint projection operator:

(n—1
N-tuwP,- K = % . (10.14)

Dimensions of the other reps and the Dynkin indices (see section 7.5) are listed in
table 10.1.

10.2 MIXED ADJOINT ® DEFINING REP TENSORS

The mixed adjoint-defining rep tensors are decomposed in the same way as for
SU (n). The intermediate defining rep state matrix R (9.60) satisfies the character-

istic equation
R2:>—O—<=n;1R. (10.15)

The corresponding projection operators are
2
n—1 ’
2
n—1 ’

P,=

P, = - (10.16)

The eigenvalue of Q from (9.61) on the defining subspace can be computed by
inserting the adjoint projection operator (10.13):

1
QR = - [ =3R. (10.17)

Q?2 is also computed by inserting (10.13):

QQZMZ%{ : _7{}:%(1—@. (10.18)
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The eigenvalues are {—1, l} and the associated projection operators (3.48) are

P2_P42(1+Q) (1——R) (1+Q) = <1+Q—iR)
:_{+?{—n_1 } (1019)
Py=P,- (1 —2Q) = { - 2?{} . (10.20)

This decomposmon is summarized in table 10.2. The same decomposition can be
obtained by viewing the SO(n) defining-adjoint tensors as H ® [J products, and
starting with the SU (n) decomposition along the lines of section 9.2.

10.3 TWO-INDEX ADJOINT TENSORS

The reduction of the 2-index adjoint rep tensors proceeds as for SU (n). The annihi-
lation matrix R. (9.78) induces decomposition of (10.11) through (10.12) into three
tensor spaces

R:K):q (10.21)
2D C+f D00

On the antisymmetric subspace, the last term projects out the adjoint rep:

A s e

The last term in (10.21) does not affect the symmetric subspace
1
1TO={0 I}}
1

because of the antisymmetry of the SO(n) generators (dljk = 0 for orthogonal
groups). The second term in (10.21),

_ m _ %) C. (10.24)

projects out the intermediate symmetric 2-index tensors subspace. To normalize it,
we compute (RS)?

msy ):Hi 2D (55D C

n—2
4

(10.25)
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RS decomposes the symmetric 2-index adjoint subspace into

250 G
- > a0 c}

P= == )‘j]:(——) ('} aoz

Because of the antisymmetry of the SO(n) generators, the index interchange matrix
(9.77) is symmetric,

5Q=5Q°=Q

838 =

so it cannot induce a decomposition of the antisymmetric subspace in (10.22). Here
Q™ indicates the diagram for Q with the arrow reversed. On the singlet subspace it

has eigenvalue +:
- g) ( - %T . (10.28)

On the symmetric 2-index defining rep tensors subspace, its eigenvalue is also % as
the evaluation by the substitution of adjoint projection operators by (10.13) yields

QR = g:c:): - %SR . (10.29)

Q? is evaluated in the same manner:

SR T8

_ %S(l — Q). (10.30)

Thus, Q satisfies the same characteristic equation as in (10.18). The corresponding
projection operators decompose the symmetric subspace (the third term in (10.26))

s

P3_{:H: >:< n—l) C}%{
zg{:ﬂi+$}—>:<—ﬁ) (. sy

IR R =Rl
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This Clebsch-Gordan series is summarized in table 10.3.

The reduction of 2-index adjoint tensors, outlined above, is patterned after the
reduction for SU (n). Another, fully equivalent approach, is to consider the SO(n)
2-index adjoint tensors as — ®  products and start from the decomposition of
section 9.5. This will be partially carried out in section 10.5.

10.4 THREE-INDEX TENSORS

In the reduction of the 2-index tensors in section 10.1, the new SO(n) invariant
was the index contraction (10.8). In general, for a multi-index tensor, the SU (n) —
SO(n) reduction is due to the additional index contraction invariants. Consider the
fully symmetric 3-index SU (n) state in table 9.1. The new SO(n) invariant matrix

on this space is
R— M . (10.33)

This is a projection onto the defining rep. The normalization follows from

S0 )

The o rep of SU (n) thus splits into

HE n+2 {HE n—+2 } (10.35)

On the mixed symmetry subspace in table 9.1, one can try various index contraction
matrices R;. However, their projections P>R,; P, are all proportional to

j]? ?]I (10.36)

The normalization is fixed by

3
E =S(n-1) , (10.37)

and the mixed symmetry rep of SU(n) in (9.12) splits as

TR
LT SR

The other mixed symmetry rep in table 9.1 splits in analogous fashion. The fully
antisymmetric space is not affected by contractions, as

EF =0 (10.39)

by the symmetry of g,,,,. Besides, as H is the adjoint rep, we have already performed

the H ® [J decomposition in the preceding section. The full Clebsch-Gordan series
for the SO(n) 3-index tensors is given in table 10.4.
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10.5 GRAVITY TENSORS

Inadifferentapplication of birdtracks, we now change the language and construct the
“irreducible rank-four gravity curvature tensors.” The birdtrack notation for Young
projection operators had originally been invented by Penrose [ 280] in this context.
The Riemann-Christoffel curvature tensor has the following symmetries [ 336]:
Raﬁvﬁ = _Rﬁa'yé
Raﬁ'yé = R’yéaﬁ (1040)
Ra[}'\/(s + R[j»yaﬁ + R'yaﬁé =0.
Introducing birdtrack notation for the Riemann tensor
o ~—
B _~—
Rapys = - R |, (10.41)
§—""
we can state the above symmetries as

=R (1042

R :% R | (10.43)
XE R SS5R -0, (10.44)

The first condition says that R lies in H ® H subspace. We have decomposed this
subspace in table 9.2. The second condition says that R lies in H — H interchange-

R |+

symmetric subspace, which splits into B} and E subspaces:

CE 3@ FEFE v

The third condition says that R has no components in the E space:

E R +E R +K R 3E R |=0. (10.46)

Hence, the Riemann tensor is a pure B} tensor, whose symmetries are summarized

by the B} rep projection operator [280]:

Ay *
(PR)agys,’ Y P 255 ?{ (10.47)
) Y

(PRR)aﬁ’y5 = (PR)aﬁv&y’y,ﬁla, Ra g0 = Rapys

AL = oo




GroupTheory  PUP Lucy Day version 8.8, March 2, 2008

ORTHOGONAL GROUPS 131

This compact statement of the Riemann tensor symmetries yields immediately the

number of independent components of R 3.5, i.€., the dimension of the B} reps

in table 9.2:

n%(n? —1)
12

The Riemann tensor has the symmetries of the B} rep of SU (n). However, gravity is

also characterized by the symmetric tensor g, that induces local SO(n) invariance
(more precisely SO(1,n — 1), but compactness is not important here). The extra
invariants built from g,3’s decompose SU (n) reps into sums of SO(n) reps.

The SU (n) subspace, corresponding to B} is decomposed by the SO(n) inter-
mediate 2-index state contraction matrix

Q- E | @050)

The intermediate 2-index subspace splits into three irreducible reps by (10.11)-
(10.12):

B L

The Riemann tensor is symmetric under the interchange of index pairs, so the anti-
symmetric 2-index state does not contribute

PrQ4 =0. (10.52)
The normalization of the remaining two projectors is fixed by computation of

% Qp:
2
P 3 €C 1es9
v PE &) ww

This completes the SO(n) reduction of the B} SU (n) rep (10.48):

dp=trPp = (10.49)

SU(n) — SO(n)

0 - m® - o -

Pr = Pw + Ps + Po (10.55)
n?(n’—1) —_ (n+2)(n+1)n(n—3) (n+2)(n—1)

-z - — 1w t —a— + 1

Here the projector for the traceless B} tensor is givenby Py = Pr — Ps — Py

szgﬁ—nfgm+ﬁin—2)§€'

(10.56)
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The above three projectors project out the standard relativity tensors:

Curvature scalar:

R= —@ R | =RM," (10.57)

Traceless Ricci tensor:

1 1
RNV - EguuR = _< R |+ ;) @ R (1058)

Weyl tensor:
C)\NVN = (PWR))\NVN

4 2
R _n—zjﬁ R +(n—1)(n—2)§' @ R

AUVK +

’;U

—9 (QWRM QAVR;m - gumR)\V + gA/{R;w)

;
(n—1)(n-2)
The numbers of independent components of these tensors are given by the dimen-

sions of corresponding subspaces in (10.55). The Ricci tensor contributes first in
three dimensions, and the Weyl tensor first in four, so we have

(97kGpr — Grwgpun) R - (10.59)

(POR)MWR = %(gAvg;m - gM@Q;W)R

g)\VRNK - guuR)\/f + ngR)\V — gMRW (1060)
_%(g)\l/guﬁ - g)\ﬁgp,u)R .

The last example of this section is an application of birdtracks to general relativity

index manipulations. The object is to find the characteristic equation for the Riemann
tensor in four dimensions. We contract (6.24) with two Riemann tensors:

n=2: Ryux
n=3:

(10.61)

R

@

Expanding with (6.19) we obtain the characteristic equation

0=2 4 —4
N—",
R2
+2R_JEL_{7_2 R R|V. (1062

For example, this identity has been used by Adler et al., eq. (E2) in ref. [ 5].

@:
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10.6 SO(n) DYNKIN LABELS

In general, one has to distinguish between the odd- and the even-dimensional or-
thogonal groups, as well as their spinor and nonspinor reps. In this chapter, we study
only the tensor reps; spinor reps will be taken up in chapter 11.

For SO(2r+1) reps there are  Dynkin labels (a1as . .. a,—12). If Z is odd, the
rep is spinor; if Z is even, it is tensor. For the tensor reps, the corresponding Young
tableau in the Fischler notation [122] is given by

Z
(alag...ar,lZ) — (alag...ar,lgoo...) . (1063)
For example, for SO(7) rep (102) we have

(102) — (1010...) = @j (10.64)

For orthogonal groups, the Levi-Civita tensor can be used to convert a long column

of k boxes into a short column of (241 — k) boxes. The highest column that cannot

be shortened by this procedure has r boxes, where r is the rank of SO(2r + 1).
For SO(2r) reps, the last two Dynkin labels are spinor roots

(araz...a,—2Y Z). Tensor reps have Y + Z = even. However, as spinors are

complex, tensor reps can also be complex, conjugate reps being related by

(alag...YZ) = (alag...ZY)* . (1065)
For Z > Y, Z +Y even, the corresponding Young tableau is given by
Z-Y

(alag . .UJT,QYZ) — (a1a2 e Q2 B 00.. ) . (1066)

The Levi-Civita tensor can be used to convert long columns into short columns. For
columns of r boxes, the Levi-Civita tensor splits O(2r) reps into conjugate pairs of
SO(2r) reps.

We find the formula of King [191] and Murtaza and Rashid [251] the most con-
venient among various expressions for the dimensions of SO(n) tensor reps given
in the literature. If the Young tableau \ is represented as in section 9.3, the list of the
row lengths [A1, Ag, ... A.], then the dimension of the corresponding SO(n) rep is
given by

. k
H A”‘ ! 1)!H(Ai+)\j+n—i—j). (10.67)

(n— 22
j=1
Here p is the total number of boxes, and d g is the dimension of the symmetric group
rep computed in (9.16). For SO(2r) and x = r, this rep is reducible and splits into
a conjugate pair of reps. For example,

n(n? — 4)

d_ 1 _
=——-(n+2)n(n—-2)= 3

(10.68)
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in agreement with (10.55). Even though the Dynkin labels distinguish SO(2r + 1)
from SO(2r) reps, this distinction is significant only for the spinor reps. The tensor
reps of SO(n) have the same Young tableaux for the even and the odd n’s.



GroupTheory  PUP Lucy Day version 8.8, March 2, 2008

Chapter Eleven

Spinors

P. Cvitanovit and A. D. Kennedy

In chapter 10 we have discussed the tensor reps of orthogonal groups. However,
the spinor reps of SO(n) also play a fundamental role in physics, both as reps of
space-time symmetries (Pauli spin matrices, Dirac gamma matrices, fermions in
D-dimensional supergravities), and as reps of internal symmetries (SO(10) grand
unified theory, for example). In calculations of radiative corrections, the QED spin
traces can easily run up to traces of products of some twelve gamma matrices [ 195],
and efficient evaluation algorithms are of great practical importance. A most straight-
forward algorithm would evaluate such atraceinsome 11!! = 11-9-7-5-3 ~ 10, 000
steps. Even computers shirk such tedium. A good algorithm, such as the ones we
shall describe here, will do the job in some 62 ~ 100 steps.

Spinors came to Cartan [43] as an unexpected fruit of his labors on the complete
classification of reps of the simple Lie groups. Dirac [95] rediscovered them while
looking for a linear version of the relativistic Klein-Gordon equation. He introduced
matrices ~,,, which were required to satisfy

(Povo +pimi +..)2 = (g —pi —p3 —-..) - (11.1)
For n = 4 he constructed ’s as [4 x 4] complex matrices. For SO(2r) and SO(2r+
1) y-matrices were constructed explicitly as [2" x2"] complex matrices by Weyl and
Brauer [344].

In the early days, such matrices were taken as a literal truth, and Klein and
Nishina [196] are reputed to have computed their celebrated Quantum Electrody-
namics crosssection by multiplying ~-matrices by hand. Every morning, day after
day, they would multiply away explicit [4x4] v, matrices and sum over y’s. In the
afternoon, they would meet in the cafeteria of the Niels Bohr Institute to compare
their results.

Nevertheless, all information that is actually needed for spin traces evaluation
is contained in the Dirac algebraic condition (11.1), and today the Klein-Nishina
trace over Dirac «’s is a textbook exercise, reducible by several applications of the
Clifford algebra condition on ~y-matrices:

{’Y,uv 'VV} = YuYv + TV = zg,uu 1. (112)
Iterative application of this condition immediately yields a spin traces evaluation
algorithm in which the only residue of v-matrices is the normalization factor tr 1.
However, this simple algorithm is inefficient in the sense that it requires a com-
binatorially large number of evaluation steps. The most efficient algorithm on the
market (for any SO(n)) appears to be the one given by Kennedy [ 185, 81]. In
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Kennedy’s algorithm, one views the spin trace to be evaluated as a 3n-j coefficient.
Fierz [120] identities are used to express this 3n-j coefficient in terms of 6-; coef-
ficients (see section 11.3). Gamma matrices are [2"/2 x 2"/?] in even dimensions,
[2(n=1)/2 % 2(n=1)/2] in odd dimensions, and at first sight it is not obvious that a
smooth analytic continuation in dimension should be possible for spin traces. The
reason why the Kennedy algorithm succeeds is that spinors are really not there at
all. Their only role is to restrict the SO(n) Clebsch-Gordan series to fully anti-
symmetric reps. The corresponding 3-;7 and 6-; coefficients are relatively simple
combinatoric numbers, with analytic continuations in terms of gamma functions.
The case of four spacetime dimensions is special because of the reducibility of
SO(4) to SU(2) ® SU(2). Farrar and Neri [115], who as of April 18, 1983, have
computed in excess of 58,149 Feynman diagrams, have used this structure to de-
velop a very efficient method for evaluating SO(4) spinor expressions. An older
technique, described here in section 11.8, is the Kahane [178] algorithm, which
implements diagrammatically the Chisholm [55] identities. REDUCE, an algebra
manipulation program written by Hearn [ 159], uses the Kahane algorithm. Thérn-
blad [323] has used SO(4) C SO(5) embedding to speedup evaluation of traces
for massive fermions.
This chapter is based on ref. [81].

11.1 SPINOGRAPHY

Kennedy [185] introduced diagrammatic notation for ~-matrices

n
(7)o = . ab=1,2,...,2"/% or 20" D/2
a-<+--- b
lyp=a---<---b, pw=12....n
, €N
tri=_J- (11.3)

In this context, birdtracks go under the name “spinography.” For notational simplic-
ity, we take all ~-indices to be lower indices and omit arrows on the n-dimensional
rep lines. The n-dimensional rep is drawn by a solid directed line to conform to the
birdtrack notation of chapter 4. For QED and QCD spin traces, one might prefer the
conventional Feynman diagram notation,

n

(7”)ab=a_i‘_ba

where the photons/gluons are in the n-dimensional rep of SO(3, 1), and electrons are
spinors. We eschew such notation here, as it would conflict with SO(n) birdtracks
of chapter 10. The Clifford algebra anticommutator condition (11.2) is given by

uoov TR
H - U (11.4)
R T
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For antisymmetrized products of ~-matrices, this leads to the relation
123 p 12 p 12 p

It

(we leave the proof as an exercise). Hence, any product of v-matrices can be ex-
pressed as a sum over antisymmetrized products of v-matrices. For example, sub-
stitute the Young projection operators from figure 9.1 into the products of two and
three v-matrices and use the Clifford algebra (11.4):

lJ - LY (11.6)

1], 1#- 1Y,

LYY e e

Only the fully antisymmetrized products of ~’s are immune to reduction by (11.4).
Hence, the antisymmetric tensors

(11.5)

I‘(O) = 1 = <------ = 0
7(,,,,,,
u
1 _ - —
SR : -
7( ,,,,,, 7(,,,,,,
[TRRRY
2
Ffw) = %[VMaVU] = H = 2 (11-8)
7( - - - 7(,,,,,,
LV o
1"(3) = = = 3
uro YV Vol
7( __ - 7(,,,,,,
My o Ha
F§1a1>1'2~~ua = M Vuz - Vpa) T = a
<l <L

provide a complete basis for expanding products of v-matrices. Applying the anti-
commutator (11.4) to a string of s, we can move the first ~ all the way to the right
and obtain

=21 K1
Y] K]
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| _‘SlJ_..‘+...+(_1)p‘g|.1J

St by =
’ ghthizhs o oatte — ghbs Al Be 4 (11.10)
This identity has three immediate consequences:
(i) Traces of odd numbers of ~’s vanish for n even.
(ii) Traces of even numbers of ~’s can be evaluated recursively.
(iii) The result does not depend on the direction of the spinor line.

According to (11.10), any y-matrix product can be expressed as a sum of terms
involving g,,,,’s and the antisymmetric basis tensors (@), so in order to prove (i) we
need only to consider traces of I' (%) for a odd. This may be done as follows:

Hﬂfo%‘ﬁﬁ
L 1+H+

»#\ (2a —n)
S
=Mm-a)v =0. (11.11)

In the third step we have used (11.10) and the fact that « is odd. Hence, tr I'(®)
vanishes for all odd a if n is even. If n is odd, tr I' ") does not vanish because by

(6.28),
12 n
e - 3 w112
A (”l”

The n-dimensional analogue of the 5,

S P P (11.13)

commutes with all v-matrices, and, by Schur’s lemma, it must be a multiple of the
unit matrix, so it cannot be traceless. This proves (i). (11.10) relates traces of length
p to traces of length p — 2, so (ii) gives

< RN

\ _
p— —v=
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tr v,y = (tr1) g, (11.14)
poo u

i \ o G u o
S X0

0 v 0 v 0

YV Yp Yo =trl {g;wgpo — 9up9vo + guugl/p} ) (11.15)
\</ <
A RN IS
/N LM

SRRAD,
+&_#+>e<_% (11.16)
ARVt

The result is always the (2p — 1)!! ways of pairing 2p indices with p Kronecker
deltas. It is evident that nothing depends on the direction of spinor lines, as spinors
are remembered only by an overall normalization factor tr 1. The above identities
are in principle a solution of the spinor traces evaluation problem. In practice they
are intractable, as they yield a factorially growing number of terms in intermediate
steps of trace evaluation.

11.2 FIERZING AROUND

The algorithm (11.16) is too cumbersome for evaluation of traces of more than
four or six «v-matrices. A more efficient algorithm is obtained by going to the I'
basis (11.8). Evaluation of traces of two and three I'’s is a simple combinatoric
exercise using the expansion (11.16). Any term in which a pair of g,,,, indices gets

antisymmetrized vanishes:
Hﬁ =0. (11.17)

That implies that I'’s are orthogonal:

a7 \,E =dgpal’ \/\, a . (11.18)

Here a! is the number of terms in the expansion (11.16) that survive antisymmetriza-
tion (11.18). A trace of three I'’s is obtained in the same fashion:
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As the I'’s provide a complete basis, we can express a product of two I matrices as
a sum over I'’s, with the extra indices carried by g, ’s. From symmetry alone we
know that terms in this expansion are of the form

(11.19)

The coefficients C,,, can be computed by tracing both sides with I"¢ and using the
orthogonality relation (11.18):

2 N N
<

/ 3 1 | \

N _gc!trl H '
,(,,/ L — 7( ,,,,,,,,,

Cc
We do not have to consider traces of four or more I'’s, as they can all be reduced to
three-I" traces by the above relation.
Let us now streamline the birdtracks. The orthogonality of I'’s (11.18) enables us
to introduce projection operators

(11.20)

1
(Pa)edses = === (Y Yuz = V) o (V727" ) g
1 d-« ,-- € 1 «
A = T (11.21)
e - 2t 3

o S

The factor of tr 1 on the left-hand side is a convenient (but inessential) normalization
convention. It is analogous to the normalization factor a in (4.29):

L i
& P (r)s——. (11.22)

\

With this normalization, each spinor loop will carry factor (tr 1) —%, and the final
results will have no tr 1 factors. a, b, . . . are rep labels, not indices, and the repeated
index summation convention does not apply. Only the fully antisymmetric SO(n)
reps occur, so a single integer (corresponding to the number of boxes in the single
Young tableau column) is sufficient to characterize a rep.

For the trivial and the single ~-matrix reps, we shall omit the labels,

A ;7 A ;7 A ;7 A ;7

/ \ / I / \ / \ )

- b - \* - b _ -
in keeping with the original definitions (11.3). The 3-I" trace (11.19) defines a 3-

vertex

b a b

) R ad

Y — W (11.24)

.
o R
c
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that is nonzero only if a + b + ¢ is even, and if a, b, and ¢ satisfy the triangle
inequalities |a — b < ¢ < |a+ b|. We apologize for using a, b, ¢ both for the SO(n)
antisymmetric representations labels, and for spinor indices in (11.3), but the Latin
alphabet has only so many letters. It is important to note that in this definition the
spinor loop runs anticlockwise, as this vertex can change sign under interchange of
two legs. For example, by (11.19),

Sy

This vertex couples three adjoint representations (10.13) of SO(n), and the sign
rule is the usual rule (4.46) for the antisymmetry of C';;;, constants. The general sign
rule follows from (11.19):

a b a b

Y = (—1)stHtutus Y . (11.26)

The projection operators P, (11.21) satisfy the completeness relation (5.8):
Z s (11.27)

This follows from the completeness of F’s, used inderiving (11.20). We have already
drawn the left-hand side of (11.20) in such a way that the completeness relation
(11.27) is evident:

Y * - trl CH‘
7(7;/\ \\»777 74(» 777777
In terms of the vertex (11.24) we get
a b a b
“ w => . (11.28)
,( ,,,,, c ,‘,? - —

In this way we can systematically replace a string of v-matrices by trees of 3-vertices.

Before moving on, let us check the completeness of P,. P, projects spinor
® antispinor — antisymmetric a-index tensor rep of SO(n). Its dimension was
computed in (6.21):

- a
dy = 1P, = — %:@: (") . (11.29)
trl a
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d, isautomatically equal to zero for n < a; this guarantees the correctness of treating
(11.28) as an arbitrarily large sum, even though for a given n it terminates at a = n.
Tracing both sides of the completeness relation (11.27), we obtain a dimension sum
rule:
2 n n n

(tr1) _Za:da_;)(a) =(1+1)"=2". (11.30)
This confirms the results of Weyl and Brauer [344]: for even dimensions the number
of components is 2, so I'’s can be represented by complex [27/2 x 2"/2] matrices.
For odd dimensions there are two inequivalent spinor reps represented by [2 (*~1)/2x
2(n=1)/2] matrices (see section 11.7). This inessential complication has no bearing
on the evaluation algorithm we are about to describe.

11.2.1 Exemplary evaluations

What have we accomplished? Iterating the completeness relation (11.28) we can
make ~y-matrices disappear altogether, and spin trace evaluation reduces to combi-
natorics of 3-vertices defined by the right-hand side of (11.19). This can be done,
but is it any quicker than the simple algorithm (11.16)? The answer is yes: high
efficiency can be achieved by viewing a complicated spin trace as a 3n-j coefficient
of section 5.2. To be concrete, take an eight v-matrix trace as an example:

<~

tr (YN Yays Y YY) = j:c (11.31)

Such a 3n-j coefficient can be reduced by repeated application of the recoupling
relation (5.13)

a =y b _T.hb (11.32)
b

QU
>

In the present context this relation is known as the Fierz identity [ 120]. It follows
from two applications of the completeness relation, as in (5.13). Now we can redraw
the 12-j coefficient from (11.31) and fierz on

= b \ . (11.33)
S| ©
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Another example is the reduction of a vertex diagram, a special case of the Wigner-
Eckart theorem (5.24):

(11.34)

CEVUEI N
=2 — < Sl /-Q : (11.35)

bed dpde b c

In this way, any spin trace can be reduced to a sum over 6-j and 3-j coefficients.
Our next task is to evaluate these.

11.3 FIERZ COEFFICIENTS

The 3-5 coefficient in (11.33) can be evaluated by substituting (11.19) and doing
“some” combinatorics

alblc! 1 n!
~ (stetul)? TS (n—s—t—u)l (11.36)

s, t,u are defined in (11.19). Note thata + b+ c =2(s +t+u), anda + b+ cis
even, otherwise the traces in the above formula vanish.

The 6-5 coefficients in the Fierz identity (11.32) are not independent of the above
3-j coefficients. Redrawing a 6-; coefficient slightly, we can apply the completeness
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relation (11.28) to obtain

a
,“/Hé\ v L Fooes
ro_ - \ - \ I ’( \ , \ /"
- = LS 7’ \\ - ~ -

b e b

Interchanging j and & by the sign rule (11.26), we express the 6-; coefficient as a
sum over 3-j coefficients:

S <.
/*}H?\\\\ = y\/ \’Z(_l)stthquusa@ ) (1137)

c c

Using relationst = a — u,s = b — u,a +t +u = a + b — u, we can replace [48]
the sum over ¢ by the sum over w:

LR e

u

u ranges from 0 to a or b, whichever is smaller, and the 6-5’s for low values of « are
particularly simple

a

R 1 (=<
— P == m =d, , (11.39)
CoT0 Con T

1 a o
— /0 = (=14 - 2a)d, (11.40)
LTI

IR (n—2a)?>—n

e

)= fda . (11.41)
N

Kennedy [185] has tabulated Fierz coefficients [120, 278, 278] Fp., b, ¢ < 6. They
are related to 6-5’s by

C

bl 1 =—— bl & a\ [n—a
B = 2T o e S Ly . 11.42
=g =V Sl (11.42)

11.4 6-j COEFFICIENTS

To evaluate (11.35) we need 6-5 coefficients for six antisymmetric tensor reps of
SO(n). Substitutions (11.24), (11.21), and (11.19) lead to a strand-network [280]
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expression for a 6-5 coefficient,

(11.43)

Pick out a line in a strand, and follow its possible routes through the strand network.
Seven types of terms give nonvanishing contributions: four “mini tours”

P - e 3 . PRGN
p sTTN 2R \ 277N TN
i / N i \ Y /1 v n
' \ [ERY /! [ I h

/0 N z | N RN s
0 A A PR .
7 T 777N h
/ / /
\ N \
, ,
~ ’

and three “grand tours”

. S

,
i (11.45)
\ 7 N 4 . .

N /7 7 \\

,
\ \
7 N /' L/ N

Let the numbers of lines in different tours be ¢ 1, to, t3, t4, t5, tg and ¢. A nonvan-
ishing contribution to the 6- 5 coefficient (11.43) corresponds to a partition of twelve
strands, s1, s2, ..., 812 iNto seventours tq, to, ..., tr

(11.46)

Comparing with (11.43), we see that each s; is a sum of two t;’s: s; = to + t7,
sy = t1 + t7, etc. It is sufficient to specify one ¢1; this fixes all ¢;’s. Now one stares
at the above figure and writes down

n t! HZ1 s;!
M(t1)=<> = ; , t=1t1+to+...+1t7 (11.47)
t) Lz ti! Hj:l a;!
(a well-known theorem states that combinatorial factors cannot be explained [ 162]).
The () factor counts the number of ways of coloring ¢1 + t3 + ... + t7 lines with
n different colors. The second factor counts the number of distinct partitions of ¢
lines into seven strands ¢4, - . . ., t7. The last factor again comes from the projector
operator normalizations and the number of ways of coloring each strand and cancels
against the corresponding factor in (11.43). Summing over the allowed partitions
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(for example, taking 0 < t; < s5), we finally obtain an expression for the 6-j5

coefficients:
A5 ()t
~\ Vo ltalta Vet nEn]

a3 P t tl.tg.t3.t4.t5.t6.t7.
t1:—a1+a22+a3+t t5:(11+0«3‘;‘a4+(16_t
t2:_a1+a25+a6+t t6:a1+a2—;—a4+a5_t
fy— _G2taitas f = G2tastastas

2 2
=TS, (11.48)

The summation in (11.48) is over all values of ¢, such that all the ¢; are nonnegative
integers. The 3-5 (11.36) is a special case of the 6-j (11.48). The 3-5’s and 6-5’s
evaluated here, for all reps antisymmetric, should suffice in most applications.

The above examples show how Kennedy’s method produces the n-dimensional
spinor reductions needed for the dimensional regularization [ 161]. Its efficiency pays
off only for longer spin traces. Each ~-pair contraction produces one 6-;5 symbol,
and the completeness relation sums do not exceed the number of pair contractions,
so for 2p y-matrices the evaluation does not exceed p? steps. This is far superior to
the initial algorithm (11.16).

Finally, a comment directed at the reader wary of analytically continuing in n
while relying on completeness sums (de Wit and 't Hooft [94, 303] anomalies).
Trouble could arise if, as we continued to low n, the k£ > n terms in the completeness
sum (11.27) gave nonvanishing contributions. We have explicitly noted that the
dimension, 3-j and 6-; coefficients do vanish for any rep if & > n. The only danger
arises from the Fierz coefficients (11.32): aratio of 6-; and d can be finite for j > n.
However, one is saved by the projection operator in the Fierz identity (11.32). This
projection operator will eventually end up in some 6-5 or 3-5 coefficient without d
in the denominator (as in (11.33)), and the whole term will vanish for k& > j.

11.5 EXEMPLARY EVALUATIONS, CONTINUED
Now that we have explicit formulas for all 3-5 and 6-j coefficients, we can complete

the evaluation of examples commenced in section 11.2.1. The eight ~-matrix trace
(11.33) is given by

L2 2
: - 0
\ ' <. +

Y

=n+n(n—1)(n—4)?, (11.49)

'
\

}
2
<.
1d
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and the ten ~-matrix trace (11.35) by

e Kl
%8‘: 5 }45\ 5\
do/*\, 0N
bs ¥l
B <A A) 2 A
<
don' ‘, Y

\

=n3 —|—n(n—1)( —4)? —2n*(n —1)(n — 4 B
—n(n—1)(n —2)(n — 4)*
=n®—n(n—1)(n—4)(n* — 5n +12). (11.50)

11.6 INVARIANCE OF y-MATRICES

The above discussion of spinors did not follow the systematic approach of section 3.4
that we employ everywhere else in this monograph: start with a list of primitive in-
variants, find the characteristic equations they satisfy, construct projection operators,
and identify the invariance group. In the present case, the primitive invariants are
G 0ap aNd (7y,,) . We could retroactively construct the characteristic equation for
Qab.cd = (V) ad (7)o from the Fierz identity (11.32), but the job is already done
and the n eigenvalues are given by (11.38)—(11.41). The only thing that we still need
to do is check that SO(n), the invariance group of g ..., is also the invariance group
of (7,.)ab-

The SO(n) Lie algebra is generated by the antisymmetric projection operator
(8.7), or I'® in the v-matrix notation (11.8). The invariance condition (4.36) for

~-matrices is
-4 - ws

To check whether I'(?) respects the invariance condition, we evaluate the first and
the term by means of the completeness relation (11.28):

i I G

The minus sign comes from the sign rule (11.26). Subtracting, we obtain
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This already has the form of the invariance condition (11.51), modulo normalization
convention. To fix the normalization, we go back to definitions (11.8), (11.24),

(11.19):
LIS S
e e e

The invariance condition (11.51) now fixes the relative normalizations of generators
in the n-dimensional and spinor rep. If we take (8.7) for the n-dimensional rep

(oo = I~ :t I z , (11.53)

then the normalization of the generators in the spinor rep is

1 1
(T,uu)ab - Z H = §[7V77H] . (1154)
a-<---t-- b

The ~v-matrix invariance condition (11.51) written out in the tensor notation is
1
[Taws Yol = 5 (9o tv = Guo ) - (11.55)
If you prefer generators (7)., indexed by the adjoint rep index i = 1,2,..., N,
then you can use spinor rep generators defined as

(Ti)ab = J - A . (11.56)
a---<--- b 4a~ --4--b

Now we can compute various casimirs for spinor reps. For example, the Dynkin
index (section 7.5) for the lowest-dimensional spinor rep is given by

A (313
PRSI T S (11.57)

@ 8n—2) n-—2

From the invariance of -y, follows invariance of all I'(®). In particular, the invari-
ance condition for I'®) is the usual Lie algebra condition (4.47) with the structure
constants given by (11.25).

11.7 HANDEDNESS

Among the bases (11.8), Piﬁ)w,,,un is special; it projects onto a 1-dimensional space,
and the antisymmetrization can be replaced by a pair of Levi-Civita tensors (6.28):

o — H — At , (11.58)
e || :;|<,

The corresponding clebsches are the generalized “~5” matrices,
1

7

*

gl

=

| =D 2y, (11.59)
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The phase factor is, as explained in section 4.8, only a nuisance that cancels away
in physical calculations. v* satisfies a trivial characteristic equation (use (6.28) and
(11.18) to evaluate this),

-3 LT -
= L L = - (1160
which yields projection operators (4.18):
1 1
P, = 5(1 +v%), P_= 5(1 —7%). (11.61)

The reducibility of Dirac spinors does not affect the correctness of the Kennedy
spin traces algorithm. However, this reduction of Dirac spinors is of physical interest,
so we briefly describe the irreducible spinor reps. Let us denote the two projectors
diagrammatically by

1=P, +P_
= e (11.62)
In even dimensions v,v* = —y*~,, while in odd dimensions ~,v* = vy*~,, S0
WP+ = Pow
n even: , (11.63)
I N i I
WP+ = Py,
n odd: . (11.64)
L+ - I

Hence, in the odd dimensions Dirac y,, matrices decompose into a pair of conjugate
[2(n=1)/2 % 2(n=1)/2] reps:

nodd: v, =P, y,PL+P_~,P_, (11.65)
and the irreducible spinor reps are of dimension 2 ("—1)/2,

11.8 KAHANE ALGORITHM
For the case of four dimensions, there is a fast algorithm for trace evaluation, due

to Kahane [178].
Consider a y-matrix contraction,

Y VWYe - - VdVa = QJ< , (11.66)

and use the completeness relation (11.27) and the “vertex” formula (11.34):
J[IREEhS

\_)
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//b \\ \
:TZ —— \ / . (11.67)
Cove 0 ady b

For n = 4, this sum ranges over k = 0,1, 2, 3,4. A spinor trace is nonvanishing
only for even numbers of ~’s, (11.16), so we distinguish the even and the odd cases
when substituting the Fierz coefficients (11.40):

J’JL ,I:';l) ) I||

B e BRI R
even \ rl/lilllj ‘I/IL..\ll

) :T{ ‘: — :\[4/ } . (11.69)

- Q7 /\\; /\’ 77777777 D

The sign of the second term in (11.68) can be reversed by transposing the three
~’s (remember, the arrows on the spinor lines keep track of signs, cf. (11.24) and

(11.26)):

. o
But now the term in the brackets in (11.68) is just the completeness sum (11.27),
and the summation can be dropped:

/l \4\ /1/
=— . (11.70)
— - ,( — -

odd S »
- __2 “« 4+« ' }’
L «"x,{‘r< B
(11.71)
-
Rule 1: = -2\ 7
,( L A — ,<//\’K/\<,,
/
YW Ve - VdVa = —2%d -V

The same trick does not work for (11.69), because there the completeness sum has
three terms:

1 i ) | \) ! )
|l == R ST S N . 11.72
« H| _ s { - N I ) N4} (172
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However, as v, 7y = — VpVa]
e G
H =— H , (11.73)
do Jdo
the sum of v, ...y @and its transpose 4 . . . 47, has a two-term completeness

o IEE

2 { 0 ) ' ) }
e R (11.74)
Lo -F ey

Finally, we can change the sign of the second term in (11. 69) by using {vs,va} = 0;

Rule 2: (@2{ . T ll

YYaVo - - YeVaVe =2{VaVa Vo -+ Ve + Ve o - WYaVa} - (11.75)

This rule and rule (11.71) enable us to remove ~-contractions (“internal photon
lines”) one by one, at most doubling the number of terms at each step. These rules
are special to n = 4 and have no n-dimensional generalization.
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Chapter Twelve

Symplectic groups

Symplectic group Sp(n) is the group of all transformations that leave invariant a
skew symmetric (p, ¢) = fasp®q":

fab=— foa a,b=1,2,...n
PO Gt S n even. (12.1)

The birdtrack notation is motivated by the need to distinguish the first and the second
index: it is a special case of the birdtracks for antisymmetric tensors of even rank
(6.57). If (p, q) is an invariant, so is its complex conjugate (p, ¢)* = f**paqs, and

fab — fba

is also an invariant tensor. The matrix A% = f,. f¢* must be proportional to unity, as
otherwise its characteristic equation would decompose the defining n-dimensional
rep. A convenient normalization is
fachb = 52
—_— v ———Ah— = ——. (12.3)
Indices can be raised and lowered at will, so the arrows on lines can be dropped.
However, omitting symplectic invariants (the black triangles) is not recommended,

as without them it is hard to keep track of signs. Our convention will be to perform
all contractions with £® and omit the arrows but not the symplectic invariants:

J = ——. (12.4)

All other tensors will have lower indices. The Lie group generators (7';),° will be

replaced by
(Ti)ab = (T3)a" fob = J—v— : (12.5)

The invariance condition (4.36) for the symplectic invariant tensor is

AN

(Ti)acfcb + fac(Ti)cb =0. (126)

A skew-symmetric matrix f,; has the inverse in (12.3) only if det f # 0. That is
possible only in even dimensions [121, 144], s0 Sp(n) can be realized only for even
n.
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In this chapter we shall outline the construction of Sp(n) tensor reps. They are
obtained by contracting the irreducible tensors of SU (n) with the symplectic invari-
ant £2* and decomposing them into traces and traceless parts. The representation
theory for Sp(n) is analogous in step-by-step fashion to the representation theory
for SO(n). This arises because the two groups are related by supersymmetry, and
in chapter 13 we shall exploit this connection by showing that all group-theoretic
weights for the two groups are related by analytic continuation into negative dimen-
sions.

12.1 TWO-INDEX TENSORS

The decomposition goes the same way as for SO(n ), section 10.1. The matrix (10.8),

given by
T = } C 12.7)

satisfies the same characteristic equation (10.9) as for SO(n). Now T is antisym-
metric, AT = T, and only the antisymmetric subspace gets decomposed. Sp(n)
2-index tensors decompose as

singlet: (P1)ab,cd
antisymmetric:  (P2)ab,cd

%fab.fcd = %3
%(fadfbc - facfbd) - %fab.fcd

(12.8)

|
W,
™

symmetric: (P3)abea = 3(fadfve + facfod) = -

The SU(n) adjoint rep (10.14) is now split into traceless symmetric and antisym-
metric parts. The adjoint rep of Sp(n) is given by the symmetric subspace, as only
P satisfies the invariance condition (12.6):

S

Hence, the adjoint rep prOJectlon operator for Sp(n) is given by

- ){ - I (12.9)

The dimension of Sp(n) is

N=trPy = _nntl) (12.10)
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Young tableaux e[ = o + [1] + H

Dynkin labels  (10...) x (10...)= (00...) + (010...) + (20...)
Dimensions n? = 1 + n<n2+1) + <n72)2<n+1)
Dynkin indices 2 = 0 ¥ 1 + n_2

Projectors L %3 C*IJ'{I_%} C}

Table 12.1 Sp(n) Clebsch-Gordan series for V@ V.

Remember that all contractions are carried out by f®* — hence the symplectic
invariants in the trace expression. Dimensions of the other reps and the Dynkin
indices (see section 7.5) are listed in table 12.1.

We could continue as for the SO (n) case, with ARV, V&V&V, - - - decompositions,
but that would turn out to be a step-by-step repetition of chapter 10. As we shall show
next, reps of SO(n) and Sp(n) are related by a “negative dimensional” duality, so
there is no need to work out the Sp(n) reps separately.
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Chapter Thirteen

Negative dimensions

P. Cvitanovit and A. D. Kennedy

A cursory examination of the expressions for the dimensions and the Dynkin indices
listed intables 7.3 and 7.5, and in the tables of chapter 9, chapter 10, and chapter 12,
reveals intriguing symmetries under substitution n — —n. This kind of symmetry is
best illustrated by the reps of SU (n); if A stands for a Young tableau with p boxes,
and )\ for the transposed tableau obtained by flipping ) across the diagonal (i.e.,
exchanging symmetrizations and antisymmetrizations), then the dimensions of the
corresponding SU (n) reps are related by

SU(n):  dx(n) = (—1)Pdx(—n). (13.1)

This is evident from the standard recipe for computing the SU (n) rep dimensions
(section 9.3), as well as from the expressions listed in the tables of chapter 9. In all
cases, exchanging symmetrizations and antisymmetrizations amounts to replacing
n by —n.

Here we shall prove the following:

Negative Dimensionality Theorem 1: For any SU (n) invariant scalar exchanging
symmetrizations and antisymmetrizations is equivalent to replacing n by —n:

SU(n) = SU(-n) . (13.2)

Negative Dimensionality Theorem 2: For any SO(n) invariant scalar there exists
the corresponding Sp(n) invariant scalar (and vice versa), obtained by exchanging
symmetrizations and antisymmetrizations, replacing the SO(n) symmetric bilinear
invariant g,;, by the Sp(n) antisymmetric bilinear invariant f,;, and replacing n by
—n:

SO(n) = Sp(—n),  Sp(n) =S0(—n). (13.3)

The bars on SU, Sp, SO indicate interchange of symmetrizations and antisym-
metrizations. In chapter 14 we shall extend the relation (13.3) to spinorial represen-
tations of SO(n).

Such relations are frequently noted in literature: Parisi and Sourlas [269] have
suggested that a Grassmann vector space of dimension n can be interpreted as an
ordinary vector space of dimension —n. Penrose [280] has introduced the term
“negative dimensions” in his construction of SU(2) ~ Sp(2) reps as SO(-2).
King [191] has proved that the dimension of any irreducible rep of Sp(n) is equal
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to that of SO(n) with symmetrizations exchanged with antisymmetrizations (the
transposed Young tableau), and » replaced by —n. Mkrtchyan [ 245] has observed
this relation for the QC'D loop equations. With the advent of supersymmetries,
n — —n relations have become commonplace, as they are built into the structure
of groups such as the orthosymplectic group OSp(b, f).

Various examples of n — —n relations cited in the literature are all special
cases of the theorems that we now prove. The birdtrack proof is simpler than the
published proofs for the special cases. Some highly nontrivial examples of n — —n
symmetries for the exceptional groups [78] will be discussed in chapter 18 and
chapter 20, where we show that the negative-dimensional cousins of SO(4) are
E-(56), D¢(32), - - -,and thatfor SU(3) then — —n symmetry leadsto E4(27), - - -.

131 SU(n) = SU(—n)

As we have argued in section 5.2, all physical consequences of a symmetry (rep
dimensions, level splittings, etc.) can be expressed in terms of invariant scalars. The
primitive invariant tensors of SU (n) are the Kronecker tensor ¢ 7 and the Levi-Civita
tensor €, ...q,, . All other invariants of SU(n) are built from these two objects. A
scalar (3n-j coefficient, vacuum bubble) is a tensor object with all indices contracted,
which in birdtrack notation corresponds to a diagram with no external legs. Thus, in
scalars, Levi-Civita tensors can appear only in pairs (the lines must end somewhere),
and by (6.28) the Levi-Civita tensors combine to antisymmetrizers. Consequently
SU (n) invariant scalars are all built only from symmetrizers and antisymmetrizers.
Expanding all symmetry operators in an SU(n) vacuum bubble gives a sum of
entangled loops. Each loop is worth n, so each term in the sum is a power of n, and
therefore an SU (n) invariant scalar is a polynomial in n.

The idea of the proof is illustrated by the following typical computation: evaluate,
forexample, the SU (n) 9-; coefficient for recoupling of three antisymmetric rank-2
reps:

e
& 69 63

A v
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_|_ .
=n3—n2—n2—|—n—n2—|—n+n—n2
=n(n—1)(n—3). (13.4)

Notice that in the expansion of the symmetry operators the graphs with an odd
number of crossings give an even power of n, and vice versa. If we change the
three symmetrizers into antisymmetrizers, the terms that change the sign are exactly
those with an even number of crossings. The crossing in the original graph that had
nothing to do with any symmetry operator, appears in every term of the expansion,
and thus does not affect our conclusion; an exchange of symmetrizations and anti-
symmetrizations amounts to substitution n — —n. The overall sign is only a matter
of convention; it depends on how we define the vertices in the 3n-j’s.

The proof for the general SU(n) case is even simpler than the above example:
Consider the graph corresponding to an arbitrary SU (n) scalar, and expand all its
symmetry operators as in (13.4). The expansion can be arranged (in any of many
possible ways) as a sum of pairs of form

..+@i@+..., (13.5)

with a plus sign if the crossing arises from a symmetrization, and a minus sign if
it arises from an antisymmetrization. The gray blobs symbolize the tangle of lines
common to the two terms. Each graph consists only of closed loops, i.e., a definite
power of n, and thus uncrossing two lines can have one of two consequences. If the
two crossed line segments come from the same loop, then uncrossing splits this into
two loops, whereas if they come from two loops, it joins them into one loop. The
power of n is changed by the uncrossing:

© S -

Hence, the pairs in the expansion (13.5) always differ by n*!, and exchanging
symmetrizations and antisymmetrizations has the same effect as substituting n —
—n (up to an irrelevant overall sign). This completes the proof of (13.2).

Some examples of n — —n relations for SU (n) reps:

1. Dimensions of the fully symmetric reps (6.13) and the fully antisymmetric
reps (6.21) are related by the Beta-function analytic continuation formula

n! _ (- )p(—n—i—p—l)!
(n—p)! (—n— 1)

(13.7)

2. Thereps (9.13) and (9.14) correspond to the 2-index symmetric, antisymmet-
ric tensors, respectively. Therefore, their dimensions in figure 9.1 are related
byn — —n.
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3. The reps (9.79) and (9.80) (see also table 7.5) are related by n — —n for the
same reason.

4. section 9.9.

13.2 SO(n) = Sp(—n)

In addition to §; and €454, SO(n) preserves a symmetric bilinear invariant g,
for which we have introduced open circle birdtrack notation in (10.1). Such open
circles can occur in SO(n) 3n-j graphs, flipping the line directions. The Levi-Civita
tensor still cannot occur, as directed lines, starting on an ¢ tensor, would have to end
on a g tensor, that gives zero by symmetry. Sp(n) differs from SO(n) by having a
skew-symmetric f,s, for which we have introduced birdtrack notation in (12.1). In
Sp(n) we can convert a Levi-Civita tensor with upper indices into one with lower
indices by contracting with n f’s, with the appropriate power of det f appearing.
We can therefore eliminate pairs of Levi-Civita tensors. A single Levi-Civita tensor
can still appear in an Sp(n) 3n-j graph, but as

ﬁﬁ_& — PE(f), (13.8)

where Pf(f) is the Pfaffian, and Pf(f)? = det f (that is left as an exercise for the
reader). Therefore a Levi-Civita can always be replaced by an antisymmetrization

(13.9)

For any SO(n) scalar there exists a corresponding Sp(n) scalar, obtained by ex-
changing the symmetrizations and antisymmetrizations and the g ,;’s and f;’s in
the corresponding graphs. The proof that the two scalars are transformed into each
other by replacing n by —n, is the same as for SU(n), except that the two line
segments at a crossing could come from a new kind of loop, containing ¢ .;’s or
fap’s. In that case, equation (13.6) is replaced by

S B & -

While now uncrossing the lines does not change the number of loops, changing g .»’s
to fup’s does provide the necessary minus sign. This completes the proof of (13.3)
for the tensor reps of SO(n) and Sp(n).

Some examples of SO(n) = Sp(—n) relations:

1. The SO(n) antisymmetric adjoint rep (10.13) corresponds to the Sp(n) sym-
metric adjoint rep (12.9).

2. Compare table 12.1 and table 10.1. See table 7.3, table 7.4, and table 7.2.
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3. Penrose [280] binors: SU(2) = Sp(2) = SO(-2).

In order to extend the proof to the spinor reps, we will first have to invent the
Sp(n) analog of spinor reps. We turn to this task in the next chapter.
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Chapter Fourteen

Spinors’ symplectic sisters

P. Cvitanovit and A. D. Kennedy

Dirac discovered spinors in his search for a vectorial quantity that could be inter-
preted as a “square root” of the Minkowski 4-momentum squared,

(P11 + P22 + p3ys + paya)® = —pi — p5 — P3 + P

What happens if one extends a Minkowski 4-momentum (p 1, p2, ps, p4) into fermi-
onic, Grassmann dimensions (p— ., P—nt1s---sP—2,P—1,P1, P2, - - - s Pr—15Pn)?
The Grassmann sector p,, anticommute and the gamma-matrix relatives in the Grass-
mann dimensions have to satisfy the Heisenberg algebra commutation relation,

['Y,ua'yu] = f,uula
instead of the Clifford algebra anticommutator condition (11.2), with the bilinear
invariant f,,, = — f.,, skew-symmetric in the Grassmann dimensions.

In chapter 12, we showed that the symplectic group Sp(n) is the invariance
group of a skew-symmetric bilinear symplectic invariant f . In section 14.1, we
investigate the consequences of taking ~ matrices to be Grassmann valued; we
are led to a new family of objects, which we have named spinsters [81]. In the
literature such reps are called metaplectic [335, 309, 192, 322, 300, 102, 193, 222].
Spinsters play a role for symplectic groups analogous to that played by spinors for
orthogonal groups. With the aid of spinsters we are able to compute, for example,
all the 3-j and 6-j coefficients for symmetric reps of Sp(n). We find that these
coefficients are identical with those obtained for SO(n) if we interchange the roles of
symmetrization and antisymmetrization and simultaneously replace the dimension
n by —n. In section 14.2, we make use of the fact that Sp(2) ~ SU(2) to show
that the formulas for SU(2) 3-j and 6-;j coefficients are special cases of general
expressions for these quantities we derived earlier.

This chapter is based onref. [81]. For adiscussion of the role negative-dimensional
groups play in quantum physics, see ref. [102].

14.1 SPINSTERS

The Clifford algebra (11.2) Dirac matrix elements (vy,, ) are commuting numbers.
In this section we shall investigate consequences of taking -, to be Grassmann
valued,

(Vu)ab()ed = — (Vo )ed (V) ab - (14.1)



GroupTheory  PUP Lucy Day version 8.8, March 2, 2008

SPINORS’ SYMPLECTIC SISTERS 161
The Grassmann extension of the Clifford algebra (11.2) is

1
ywwA:hﬂ, wv=1,2,...,n, neven. (14.2)

The anticommutator gets replaced by a commutator, and the SO(n) symmetric
invarianttensor g,,,, by the Sp(n) symplectic invariant f,,,,. Just as the Dirac gamma-
matrices lead to spinor reps of SO(n), the Grassmann valued v, give rise to Sp(n)
reps, which we shall call spinsters. Following the Sp(n) diagrammatic notation
for the symplectic invariant (12.1), we represent the defining commutation relation

(14.2) by
R 0
a<€ o

For the symmetrized products of v matrices, the above commutation relations lead
to
123 p

S b

As in chapter 11, this gives rise to a complete basis for expanding products of
~-matrices. I'’s are now the symmetrized products of v matrices:
123 a

(14.4)

(14.5)

Note that while for spinors the I (*) vanish by antisymmetry for & > n, for spinsters
the I'(*)’s are nonvanishing for any k, and the number of spinster basis tensors is
infinite. However, the reduction of a product of k-v-matrices involves only a finite
number of T, 0 < I < k. As the components (,,),, are Grassmann valued,
spinster traces of even numbers of 4’s are anticyclic:

Ty = (Yu)ab (Vo )ba =— tr Yoy

L€ L
—_— —_— e — —_—
TP e
tE YV Yo Yo == BV Vo Yo Y (14.6)

n v n v
N/ N/
¢ A =— A .
/N /N
c p c p
In the diagrammatic notation we indicate the beginning of a spinster trace by a dot.

The dot keeps track of the signs in the same way as the symplectic invariant (12.3)
for f,... Indeed, tracing (14.3) we have

try, = fu trl

, <€ PR
—a— (14.7)

Moving a dot through a v matrix gives a factor —1, as in (14.6).
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Spinster traces can be evaluated recursively, as in (11.7). For a trace of an even
number of ~’s we have

(SR RA T 5 Rl B o - ot

. o Eee s 5o (148)
.\777)777/ .\777)777/’ .\777)777,/ .\777)777/’

The trace of an odd number of ~’s vanishes [81]. Iteration of equation (14.8)
expresses a spinster trace asasumofthe (p — DH)!' = (p—1)(p—3) ...5.3.1 ways
of connecting the external legs with f,,,.. The overall sign is fixed uniquely by the
position of the dot on the spinster trace:

L'JI[ZUU+M+M (14.9)

ey
and so on (see (11.15)).

Evaluation of traces of several I'’s is again a simple combinatoric exercise. Any
term in which a pair of £, indices are symmetrized vanishes, which implies that
any T'(®) with & > 0 is traceless. The I'’s are orthogonal:

N RN
al Tb o= ald, 8 . (14.10)

N 4 N
- -

The symmetrized product of a f,,,,’s denoted by

1
e ZﬂE (14.11)
a

is either symmetric or skew-symmetric:
= (-1 E (14.12)

——v—

\
!
,

A spinster trace of three symmetric Sp(n) reps defines a 3-vertex:

&ﬁ -~ 1hle!
\Y ’/:/ \\’(_1)ta.b.c.

‘b‘ sltlu!

=0 fora+b+c = odd,
1 1 1
s = §(b—|—c—a), t:§(c+a—b), u = §(a—|—b—c). (14.13)
As in (11.20), I'’s provide a complete basis for expanding products of arbitrary
numbers of v matrices:

W

] =D = 3 (14.14)
b " *

v N - I £S
The coupling coefficients in (14.14) are computed as spinster traces using the or-
thogonality relation (14.10). As only traces of even numbers of y’s are nonvanishing,
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spinster traces are even Grassmann elements; they thus commute with any other T,
and all the signs in the above completeness relation are unambiguous.

The orthogonality of I'’s enables us to introduce projection operators and 3-
vertices:

1 3 L= 1 3 -
A A (14.15)

; a b
a b (_1)t \4\/
Y == :\f : (14.16)

The sign factor (—1)* gives a symmetric definition of the 3-vertex (see (3.11)). It is
important to note that the spinster loop runs clockwise in this definition. Because of
(3.41), the 3-vertex has a nontrivial symmetry under interchange of two legs:

T s+t+u Y (1417)

Note that this is different from (11.26); one of the few instances of spinsters and
spinors differing in a way that cannot be immediately understood as an n — —n
continuation.

The completeness relation (14.14) can be written as

I

[}
>

\

! V= PERt I (14.18)
B D Rt -
\ -- b
v A L 2
The recoupling relation is derived as in the spinor case (11.32)
CIL»
< ”J,»\/ //(/,/‘/
c% d Z — 2 b, - (14.19)
ooy »/ b . .‘\,4\

/’
\

Here dy, is the dimension of the fully symmetrized b-index tensor rep of Sp(n):

1
dy = @% _ @E - (” +2’_ 1> — (_1)b(_b”) . (14.20)

The spinster recoupling coefficients in (14.19) are analogues of the spinor Fierz
coefficients in (11.32). Completeness can be used to evaluate spinster traces in the
same way as in examples (11.34) to (11.35).
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The next step is the evaluation of 3-5’s, 6-5’s, and spinster recoupling coefficients.
The spinster recoupling coefficients can be expressed in terms of 3-5’s just as in
(11.37):

i ,;’fﬂi}\ = Z(—n#@c. (14.21)
0 ! b

The evaluation of 3-; and 6-5 coefficients is again a matter of simple combinatorics:

3 t —1 t !
(—1)st+u n+s+t+u (s + —|—u)7 (14.22)
s+t+u sltlu!

n+t—1 (—1)t!
14.23
Z ( t )tl!tg!tg!t4!t5!t6!t7! ’ ( )

with the ¢; defined in (11.48).

We close this section with a comment on the dimensionality of spinster reps.
Tracing both sides of the spinor completeness relation (11.27), we determine the
dimensionality of spinor reps from the sum rule (11.30):

2 n n
(tr1) _; <a> =",
Hence, Dirac matrices (in even dimensions) are [2"/2 x 27/2], and the range of
spinor indices in (11.3)isa,b = 1,2,...,2"/2.

For spinsters, tracing the completeness relation (14.18) yields (the string of -+ ma-
trices was indicated only to keep track of signs for odd b’s):

’\,4\) ’\,4\): ;Y'JF* _ Zdb (14.24)
NI 3 '\\ b b

o0

1) (n—!—b—l).

=3 ("7
The spinster trace is infinite. This is the reason why spinster traces are not to be found
in the list of the finite-dimensional irreducible reps of Sp(n). One way of making
the traces meaningful is to note that in any spinster trace evaluation only a finite
number of I"’s are needed, so we can truncate the completeness relation (14.18) to
terms 0 < b < byae- A mMore pragmatic attitude is to observe that the final results
of the calculation are the 3-5 and 6-; coefficients for the fully symmetric reps of
Sp(n), and that the spinster algebra (14.2) is a formal device for projecting only the
fully symmetric reps from various Clebsch-Gordan series for Sp(n).

The most striking result of this section is that the 3-; and 6-j coefficients are
just the SO(n) coefficients evaluated for n — —n. The reason for this we already
understand from chapter 13.

When we took the Grassmann extension of Clifford algebras in (14.2), it was not
too surprising that the main effect was to interchange the role of symmetrization
and antisymmetrization. All antisymmetric tensor reps of SO(n) correspond to the
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symmetric rep of Sp(n). What is more surprising is that if we take the expression
we derived for the SO(n) 3-j and 6-5 coefficients and replace the dimension n by
—n, we obtain exactly the corresponding result for Sp(n). The negative dimension
arises in these cases through the relation (7"") = (—1)*("*%"), which may be
justified by analytic continuation of binomial coefficients by the Beta function.

14.2 RACAH COEFFICIENTS

So far, we have computed the 6-5 coefficients for fully symmetric reps of Sp(n).
Sp(2) plays a special role here; the symplectic invariant f#* has only one indepen-
dent component, and it must be proportional to € #¥. Hence, Sp(2) ~ SU(2). The
observation that SU (2) can be viewed as SO(—2) was first made by Penrose [280],
who used it to compute SU(2) invariants using “binors.” His method does not gen-
eralize to SO(n), for which spinors are needed to project onto totally antisymmetric
reps (for the case n = 2, this is not necessary as there are no other reps). For SU (2),
all reps are fully symmetric (Young tableaux consist of a single row), and our 6-5’s
are all the 6-5’s needed for computing SU(2) ~ SO(3) group-theoretic factors.
More pedantically: SU(2) ~ Spin(3) ~ SO(3). Hence, all the Racah [286] and
Wigner coefficients, familiar from the atomic physics textbooks, are special cases
of our spinor/spinster 6-5’s. Wigner’s 3-j symbol (5.14)

(_1)j1 —j2+M
vV2J+1

is really a clebsch with our 3-5 as a normalization factor.
This may be expressed more simply in diagrammatic form:

(it o) =

mi1 m2 —M

(j172mame| JM) (14.25)

201
Z’phase

(a2, u) = N (14.26)

mi mo —M 25 /'
@ 2j2

where we have not specified the phase convention on the right-hand side, as in the
calculation of physical quantities such phases cancel. Factors of 2 appear because our

integersa, b, ... = 1,2,...countthe numbers of SU(2) 2-dimensional reps (SO(3)
spinors), whilethe usual j1, jo,... = %, 1, %, ... labels correspondto SO(3) angular
momenta.

It is easy to verify (up to a sign) the completeness and orthogonality properties
of Wigner’s 3-5 symbols

2js 2ix
o o d 2J
D@70 (G, A G )~ g A

2)1 ] )
J.M J @ 20 2i
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1 - 2j1 o
i i J i i J' 2J (:),23
Z (271741 2727,2 M) (271741 2727,2 M/) ~ 2]1 5JJ’
mimeo @
Onimr 6y
~— 14.28
2J +1 ( )

The expression (14.22) for our 3-j coefficient with n = 2 gives the expression

X . ) S
usually written as A in Racah’s formula for (7,%!),

iy
L : _ (G+k+1+1)
AGRD HWM@_ Grh—Di+i—parj—m 4%

Wigner’s 6-j coefficients (5.15) are the same as ours, except that the 3-vertices are
normalized as in (14.26)

1 2k, 2k,
J1 g2 g3 |
ki ko ks [ - - . - ﬂ@ , (14.30)
{ } Jl 12 J3 11

2k,
which gives Racah’s formula using (14.23), with n = 2:

{8828 } =180 koks) Ak jaks) Al k) A1 jads)
s (—1)f(t +1)!

,  Wwhere
tyltaltglt s bt

t
Lhi=t—j1—J2—7Js, ts =J1+Jje—ki+ka—t,
lo=t—j1—ka—ks, 1l =Jo+js+hkathks—1t,
tg=t—ki—jo—ks, tr=/js+tjtkstk —t,
tamt —ky — ko — js. (14.31)

14.3 HEISENBERG ALGEBRAS

What are these “spinsters”? A trick for relating SO(n) antisymmetric reps to Sp(n)
symmetric reps? That can be achieved without spinsters: indeed, Penrose [280]
had observed many years ago that SO(—2) yields Racah coefficients in a much
more elegant manner than the usual angular momentum manipulations. In chap-
ter 13, we have also proved that for any scalar constructed from tensor invariants,
SO(—n) ~ Sp(n). This theorem is based on elementary properties of permutations
and establishes the equivalence between 6-; coefficients for SO(—n) and Sp(n),
without reference to spinsters or any other Grassmann extensions.

Nevertheless, spinsters are the natural supersymmetric extension of spinors, and
the birdtrack derivation offers a different perspective from the literature discussions
of metaplectic reps of the symplectic group [309, 322, 102, 193, 222]. They do
not appear in the usual classifications, because they are infinite-dimensional reps
of Sp(n). However, they are not as unfamiliar as they might seem; if we write the
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Grassmannian ~ matrices for Sp(2D) as v, = (p1,p2,-..Pp,%1,22...2p) and

choose f,,,, of form
0 1
f= (_1 0) , (14.32)

the defining commutator relation (14.2) is the defining relation for a Heisenberg
algebra, except for a missing factor of :

[pi,ajj] :5ij17 z,]:1,2,D (1433)

If we include an extra factor of 7 into the definition of the “momenta” above, we find
that spinsters resemble an antiunitary Grassmann-valued rep of the usual Heisenberg
algebra. The Clifford algebra has its spinor reps, and the Heisenberg algebra has
its infinite-dimensional Fock representation. The Fock space rep of the metaplectic
group Mp(n) is the double cover of the symplectic group Sp(n), just as the spinors
rep of the Spin group is the double cover of the rotation group SO(n).
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Chapter Fifteen

SU (n) family of invariance groups

SU(n) preserves the Levi-Civita tensor, in addition to the Kronecker ¢ of sec-
tion 9.10. This additional invariant induces nontrivial decompositions of U (n) reps.
In this chapter, we show how the theory of SU(2) reps (the quantum mechanics
textbooks’ theory of angular momentum) is developed by birdtracking; that SU (3)
is the unique group with the Kronecker delta and a rank-3 antisymmetric primitive
invariant; that SU (4) is isomorphic to SO(6); and that for n > 4, only SU(n) has
the Kronecker § and rank-n antisymmetric tensor primitive invariants.

15.1 REPS OF SU(2)

For SU(2), we can construct an additional invariant matrix that would appear to
induce a decomposition of V. ® V reps:

1 b c
bod = 5€ €bd = I I : (15.1)
2 d a

However, by (6.28) this can be written as a sum over Kronecker deltas and is not
an independent invariant. So what does ¢ do? It does two things; it removes the
distinction between a particle and an antiparticle (if ¢, transforms as a particle, then
£, transforms as an antiparticle), and it reduces the reps of SU(2) to the fully
symmetric ones. Consider V' ® V' decomposition (7.4)

1]®[2]=[1]2]+ e

—_——
= + I (15.2)
———
2-3 2-1
2= 2
2 + 2

The antisymmetric rep is a singlet,

:]: _ :] I:: (15.3)

Now consider the ®V3 and @V* space decompositions, obtained by adding
successive indices one at a time:

<

= IgEs HE
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[1] > [2] x [8]=[1]2[3] + [1] + [3]

— %E :jjI:

3 1rE*‘:fﬂT| HE

[1]x[2] x [3] x [4]=[1]2]3]4] +[1]4]+ [3]4] +[1[2] + e f». (15.4)

This is clearly leading us into the theory of SO(3) angular momentum addition (or
SU(2) spin, i.e., both integer and half-integer irreps of the rotation group), described
in any quantum mechanics textbook. We shall, anyway, persist a little while longer,
just to illustrate how birdtracks can be used to recover some familiar results.

The projection operator for m-index rep is

1
P, =2 ?jE . (15.5)

The dimensionistrP,,, =22+ 1)(2+2)...(2+m —1)/m! =m-+1. Inquan-
tum mechanics textbooks m is set to m = 27, where j is the spin of the rep. The
projection operator (7.10) for the adjoint rep (spin 1) is

YCTT DO e

This can be rewritten as using (15.3). The quadratic casimir for the defining
rep is

o

3
—— 15.7
. (157)

TIC-X[C-S 40w

we can compute the quadratic casimir for any rep

Using

:n{ﬂ E-ﬂ-(nl)f[/{\f}

:n<§+”_1> L _nn+2) (15.9)

A
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The Dynkin index for n-index rep is given by
(n) = Ca(n)d, _ n(n+1)(n+ 2) .
C5(2)ds 24
We can also construct clebsches for various Kronecker products. For example,

Ap @ A1 is given by
Ap=1) j E (15.11)
e

1
e
forany U(n). For SU(2) we have (15.3), so

p
[112]-]p-1 x [pl=[1][2[[p] +[1]2]]p-2

Mﬂ E (15.12)
e [

Hence, the Clebsch-Gordan for A\, ® Ay — Ap—1 is

—_— 1
—— 2

V2o =1)/p e p2- (15.13)
~—

(15.10)

As we have already given the complete theory of SO(3) angular momentum in
chapter 14, by giving explicit expressions for all Wigner 6-; coefficients (Racah
coefficients), we will not pursue this further here.

Group weights have an amusing graph-theoretic interpretation for SO(3). For a
planar vacuum (no external legs) diagram weight W & with normalization o = 2,
W is the number of ways of coloring the lines of the graph with three colors [ 280].
This, in turn, is related to the chromatic polynomials, Heawood’s conjecture, and
the 4-color problem [293, 267].

15.2 SU(3) ASINVARIANCE GROUP OF A CUBIC INVARIANT

QCD hadrons are built from quarks and antiquarks, and with hadron spectrum con-
sisting of the following

1. Mesons, each built from a quark and an antiquark.

2. Baryons, each built from three quarks or antiquarks in a fully antisymmetric
color combination.

3. No exotic states, i.e., no hadrons built from other combinations of quarks and
antiquarks.

We shall show here that for such hadronic spectrum the color group can be only
SU(3).

In the group-theoretic language, the above three conditions are a list of the prim-
itive invariants (color singlets) that define the color group:
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1. One primitive invariant is §, so the color group is a subgroup of SU (n).
2. There is a cubic antisymmetric invariant f 2*¢ and its dual f,p..

3. There are no further primitive invariants. This means that any invariant tensor
can be written in terms of the tree contractions of 62, £2°¢ and fy...

In the birdtrack notation,

C C
fee = /t\ , fabe = A : (15.14)
a b a b

fae and fa%¢ are fully antisymmetric:

/&\ = —/t\ . (15.15)

We can already see that the defining rep dimension is at least three, n > 3, as other-
wise f,». would be identically zero. Furthermore, f’s must satisfy a normalization
condition,

fabcfbdc = 045((11

—)—O—)—:a—)— . (15.16)

(For convenience we set « = 1 in what follows.) If this were not true, eigenvalues
of the invariant matrix F¢ = £ f,4. could be used to split the n-dimensional rep
in a direct sum of lower-dimensional reps; but then n-dimensional rep would not be
the defining rep.

V ®V states: According to (7.4), they split into symmetric and antisymmetric
subspaces. The antisymmetric space is reduced to n + n(n — 3)/2 by the fabe

invariant:
i MR MY
A = fape 4 + {Aav® — fave £} . (15.17)

On the symmetric subspace the fq. f¢? invariant vanishes due to its antisymmetry,
so this space is not split. The simplest invariant matrix on the symmetric subspace
involves four f’s:

f

a C )
Kab,Cd - b eg 9 d - faeffbhgfcehfdjg . (1518)

h
As the symmetric subspace is not split, this invariant must have a single eigenvalue

Kap," = S, = : (15.19)
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Tracing K, “* fixes § = —25. The assumption, that k is not an independent in-
variant, means that we do not allow the existence of exotic ¢qgq hadrons. The

requirement, that all invariants be expressible as trees of contractions of the primi-

tives
a4 +B:>C+C:>+(:, (15.20)

leads to the relation (15.19). The left-hand side is symmetric under index interchange
a+<bsoC=0and A= DB.

V®V states: The simplest invariant matrix that we can construct from f’s is

d 12 ¢ d
bre = — :D< = " foce - (15.21)
O d

By crossing (15.19), Q satisfies a characteristic equation,

1
V=7 T

:nil {_’_+} C} . (15.22)

On the traceless subspace (7.8), this leads to

(Q2 - 1> Py =0, (15.23)

n+1

with eigenvalues +1/+/n + 1. V ® V contains the adjoint rep, so at least one of the
eigenvalues must correspond to the adjoint projection operator. \We can compute the
adjoint rep eigenvalue from the invariance condition (4.36) for fb<¢:

\»iUf i +\fi«:0. (15.24)

Contracting with £, we find

P
T2
PAQ:—%PA. (15.25)

Matching the eigenvalues, we obtain 1/y/n + 1 = 1/2, so n = 3: quarks can come
in three colors only, and f . is proportional to the Levi-Civita tensor & 4. 0f SU(3).
The invariant matrix Q is not an independent invariant; the n(n — 3) /2-dimensional
antisymmetric space (15.17) has dimension zero, so Q can be expressed in terms of

Kronecker deltas:

0=Au — Q% (15.26)
We have proven that the only group that satisfies the conditions 1-3, at the beginning
of this section, is SU(3). Of course, it is well known that the color group of physical
hadrons is SU(3), and this result might appear rather trivial. That it is not so will
become clear from the further examples of invariance groups, such as the G 5 family
of the next chapter.
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15.3 LEVI-CIVITA TENSORSAND SU(n)

In chapter 12, we have shown that the invariance group for a symplectic invariant f ¢°
is Sp(n). In particular, for f2 = £ the Levi-Civita tensor, the invariance group is
SU(2) = Sp(2). Inthe preceding section, we have proven that the invariance group
of a skew-symmetric invariant 2% is SU(3), and that £ must be proportional
to the Levi-Civita tensor. Now we shall show that for f << with r indices, the
invariance group is SU(r), and f is always proportional to the Levi-Civita tensor.
(We consider here unitary transformations only; in general, the whole group SL(3)
preserves the Levi-Civitatensor.) » = 2 and = 3 cases had to be treated separately,
because it was possible to construct from f *®and £t tree invariantsonthe VoV —
V ® V space, which could reduce the group SU (n) to a subgroup. For f %, n > 4
this is, indeed, what happens: SU (n) — Sp(n), for n even.

For » > 4, we assume here that the primitive invariants are 5% and the fully
skew-symmetric invariant tensors

e < N fuuar = (), 723, (152D)

A fully antisymmetric object can be realized only in n > r dimensions. By the
primitiveness assumption

AT
1@( - n2_a 1 I , e, (15.28)

i.e,, various contractions of f’s must be expressible in terms of §’s, otherwise there
would exist additional primitives. (f invariants themselves have too many indices
and cannot appear on the right-hand side of the above equations.)

The projection operator for the adjoint rep can be built only from ¢ 3 and §545.
From section 9.10, we know that this can give us only the SU (n) projection operator
(7.8), but just for fun we feign ignorance and write

é}{ :A{:er} C} . (15.29)

The invariance condition (6.56) on fqs.. . Yyields

Contracting from the top, we get 0 = 1 + bn. Antisymmetrizing all outgoing legs,
we get

0= . (15.30)
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Contracting with §; from the side, we get 0 = n — r. As in (6.30), this defines the
Levi-Civita tensor in n dimensions and can be rewritten as

% = naH . (15.31)

(The conventional Levi-Civita normalization is na = n!.) The solutionb = —1/n
means that 75 is traceless, i.e., the same as for the SU(n) case considered in sec-
tion 9.10. To summarize: The invariance condition forces f ... to be proportional
to the Levi-Civita tensor (in n dimensions, a Levi-Civita tensor is the only fully
antisymmetric tensor of rank n), and the primitives 65, fap...q (rank n) have SU (n)
as their unique invariance algebra.

15.4 SU(4)-SO(6) ISOMORPHISM

We have shown that if the primitive invariants are §;%, fas...cq’, the corresponding
Lie groupis the defining rep of SU (n), and f4p...cq IS proportional to the Levi-Civita
tensor. However, there are still interesting things to be said about particular SU (n)’s.
As an example, we will establish the SU(4) ~ SO(6) isomorphism.

The antisymmetric SU (4) repis of dimensiond 4 = 4 - 3/2 = 6. Letus introduce

clebsches

A, 21(7 Jab(vu) m=1,2,...,6. (15.32)

1/4 normalization ensures that ~’s will have the Dirac matrix normalization.
The Levi-Civita tensor induces a quadratic symmetric invariant on the 6-dimen-

sional space
-(ﬂ)- %

=1 (m) Pepaca()™ . (15.33)

This invariant has an inverse:

g" = g = 6 -)-CJE‘)-(- (15.34)

where the factor 6 is the normalization factor, fixed by the condition g ... g"7 = 4;;:

Guvg”" = B .
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D02 e
=6 4 3
— = 7 (15.35)

Here we have used (6.28), (15.32), and the orthonormality for clebsches:

e e — g
(V)™ (7" )ba =407, . (15.36)

As we have shown in chapter 10, the invariance group for a symmetric invariant g ,,,,
is SO(d 4). One can check that the generators for the 6-dimensional rep of SU (4),
indeed, coincide with the defining rep generators of SO(6), and that the dimension
of the Lie algebra is in both cases 15.

The invariance condition (6.56) for the Levi-Civita tensor is

oﬁm:;a s
n
For SU(4) we have
- > [ ]
+ + e + = j 1 . (15.38)
+] \q Yy Y ] YVYY *

Contracting with (y,,)®*(v,,)°?, we obtain

3
<

- H
(ﬁ/u) ’71/ ab + 'Yu ad VU 26().%“/ . (1539)

Here (7,)ab = (7)Y dean, and we recognize the Dirac equation (11.4). So the
clebsches (15.32) are, indeed, the ~-matrices for SO(6) (semi)spinor reps (11.65).
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Chapter Sixteen

G, family of invariance groups

In this chapter, we begin the construction of all invariance groups that possess a
symmetric quadratic and an antisymmetric cubic invariant in the defining rep. The
resulting classification is summarized in figure 16.1. We find that the cubic invariant
must satisfy either the Jacobi relation (16.7) or the alternativity relation (16.11). In
the former case, the invariance group can be any semisimple Lie group in its adjoint
rep; we pursue this possibility in the next chapter. The latter case is developed in
this chapter; we find that the invariance group is either SO(3) or the exceptional Lie
group G. The problem of evaluation of 3n-j coefficients for GG 5 is solved completely
by the reduction identity (16.14). As a by-product of the construction, we give a proof
of Hurwitz’s theorem (section 16.5) and demonstrate that the independent casimirs
for G are of order 2 and 6, by explicitly reducing the order 4 casimir in section 16.4.
Here we are concerned only with the derivation of G 2. For a systematic discussion
of G5 invariants (in tensorial notation) we refer the reader to Macfarlane [ 221].
Consider the following list of primitive invariants:

1. &7, so the invariance group is a subgroup of SU(n).

2. Symmetric ¢*® = ¢**, ga» = gra, SO the invariance group is a subgroup of
SO(n). As in chapter 10, we take this invariant in its diagonal, Kronecker
delta form dp.

3. A cubic antisymmetric invariant f ..

Primitiveness assumption requires that all other invariants can be expressed in terms
of the tree contractions of 4,5 , fabe-

In the diagrammatic notation, one keeps track of the antisymmetry of the cubic
invariant by reading the indices off the vertex in a fixed order:

fabc = * = _é = _facb- (161)

The primitiveness assumption implies that the double contraction of a pair of f’s
is proportional to the Kronecker delta. We can use this relation to fix the overall
normalization of f’s:

fabc.fcbd =« 5ad

For convenience, we shall often set & = 1 in what follows.

(16.2)
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primitives: /k JE—

two relations one relation

assume:
no relations

Jacobi alternatlvny

B+ oo -

any adjoint representation

quarti; primitive no quartic primitive
SU(n), SO (™). Spn) E, family

Figure 16.1 Logical organization of chapters 16-17. The invariance groups SO(3) and G-
are derived in this chapter, while the Es family is derived in chapter 17.

The next step in our construction is to identify all invariant matrices on V@V and
construct the Clebsch-Gordan series for decomposition of 2-index tensors. There
are six such invariants: the three distinct permutations of indices of § ,;0.4, and the
three distinct permutations of free indices of f 4. fecq- FOr reasons of clarity, we shall
break up the discussion in two steps. In the first step, section 16.1, we assume that
a linear relation between these six invariants exists. Pure symmetry considerations,
together with the invariance condition, completely fix the algebra of invariants and
restrict the dimension of the defining space to either 3 or 7. In the second step,
section 16.3, we show that a relation assumed in the first step must exist because of
the invariance condition.

Example. Consider “quarks"” and “hadrons” of a Quantum Chromodynamics with
the hadronic spectrum consisting of the following singlets:

1. Quark-antiquark mesons.
2. Mesons built of two quarks (or antiquarks) in a symmetric color combination.

3. Baryons built of three quarks (or antiquarks) in a fully antisymmetric color
combination.

4. No exotics, i.e., no hadrons built from other combinations of quarks and
antiquarks.
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As we shall now demonstrate, for this hadronic spectrum the color group is either
SO(3), with quarks of three colors, or the exceptional Lie group G o, with quarks
of seven colors.

16.1 JACOBI RELATION

If the above six invariant tensors are not independent, they satisfy a relation of form

0=4 +5)) C+C><+D::+E>—<+F:><. (16.3)

Antisymmetrizing a pair of indices yields

0= A’I + EH + FI: , (16.4)

and antisymmetrizing any three indices yields

0=(E+F) : (16.5)

If the tensor itself vanishes, f’s satisfy the Jacobi relation (4.49):

W#ﬂﬁ a9

If A’ # 0in (16.4), the Jacobi relation relates the second and the third term:

0= I + E’>—< . (16.7)

The normalization condition (16.2) fixes £’ =

H I (16.8)

Contracting the free ends of the top line with 6,5, we obtain 1 = (n — 1)/2, so
n = 3. We conclude that if pair contraction of f’s is expressible in terms of §’s,
the invariance group is SO(3), and f .. is proportional to the 3-index Levi-Civita
tensor. To spell it out; in three dimensions, an antisymmetric rank-3 tensor can take
only one value, fq.,. = =+ f103, that can be set equal to +1 by the normalization
convention (16.2).

If A’ = 0 in (16.4), the Jacobi relation is the only relation we have, and the
adjoint rep of any simple Lie group is a possible solution. We return to this case in
chapter 17.

16.2 ALTERNATIVITY AND REDUCTION OF f-CONTRACTIONS

If the Jacobi relation does not hold, we must have £ = —F in (16.5), and (16.4)

takes the form
>—<+ I 4 I . (16.9)
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Contracting with 4, fixes A” = 3/(n — 1). Symmetrizing the top two lines and
rotating the diagrams by 90°, we obtain the alternativity relation:

:[:nil{D C—I}- (16.10)

The name comes from the octonion interpretation of this formula (see section 16.4).

Adding the two equations, we obtain
1

I+H:n_1{ —2><+) C} (16.11)
By (16.9), the invariant is reducible on the antisymmetric subspace. By
(16.10), it is also reducible on the symmetric subspace. The only independent f - f
invariant is )—( which, by the normalization (16.2), is already the projection
operator that projects the antisymmetric 2-index tensors onto the n-dimensional
defining space. The Clebsch-Gordan decomposition of V&V follows:

D C{IZ- D d
O
(n — 1)2(n+ 2) n(n—3) (16.12)

The dimensions of the reps are obtained by tracing the corresponding projection
operators.

The adjoint rep I of SO(n) is now split into two reps. Which one is the new
adjoint rep? We determine this by considering (6.56), the invariance condition for
fave- 1T we take )—( to be the projection operator for the adjoint rep, we again
get the Jacobi condition (16.6), with SO(3) as the only solution. However, if we
demand that the last term in (16.12) is the adjoint projection operator

SO < s

the invariance condition takes the form

The last term can be simplified by (6.19) and (16.9):

B

Substituting back into (16.14) yields

b hyeal

n?=1+
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Expanding the last term and redrawing the equation slightly, we have

b o

This equation is antisymmetric under interchange of the left and the right index
pairs. Hence, 2/(n — 1) = 1/3, and the invariance condition is satisfied only for
n = 7. Furthermore, the above relation gives us the G5 reduction identity

This identity is the key result of this chapter: it enables us to recursively reduce all

contractions of products of §-functions and pairwise contractions f s fcde, and thus

completely solves the problem of evaluating any casimir or 3n-j coefficient of G 5.
The invariance condition (16.14) for f,. implies that

> DC a1

The “triangle graph” for the defining rep can be computed in two ways, either by
contracting (16.10) with f,;., or by contracting the invariance condition (16.14)

with d4p:
A )\ (16.17)
n—1

So, the alternativity and the invariance conditions are consistent if (n—3)(n—7) = 0,
i.e., only for three or seven dimensions. In the latter case, the invariance group is
the exceptional Lie group G-, and the above derivation is also a proof of Hurwitz’s
theorem (see section 16.4).

In this way, symmetry considerations together with the invariance conditions
suffice to determine the algebra satisfied by the cubic invariant. The invariance
condition fixes the defining dimension to n = 3 or 7. Having assumed only that
a cubic antisymmetric invariant exists, we find that if the cubic invariant is not a
structure constant, it can be realized only in seven dimensions, and its algebra is
completely determined. The identity (16.15) plays the role analogous to one the
Dirac relation {~,, v, } = 2¢,.,1 plays for evaluation of traces of products of Dirac
gamma-matrices, described above in chapter 11. Just as the Dirac relation obviates
the need for explicit reps of ~’s, (16.14) reduces any f - f - f contraction to a sum
of terms linear in f and obviates any need for explicit construction of f’s.

The above results enable us to compute any group-theoretic weight for G 5 in two
steps. First, we replace all adjoint rep lines by the projection operators P 4 (16.13).
The resulting expression contains Kronecker deltas and chains of contractions of
fabe, Which can then be reduced by systematic application of the reduction identity
(16.15).
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The above 1975 diagrammatic derivation of the Hurwitz theorem was one of the
first nontrivial applications of the birdtrack technology [ 73, 74, 82]. More recently,
the same diagrammatic proof of Hurwitz’s theorem has been given by Dominic
Boos [27], based on the algebraic proof by Markus Rost [299].

16.3 PRIMITIVITY IMPLIESALTERNATIVITY

The step that still remains to be proven is the assertion that the alternativity relation
(16.10) follows from the primitiveness assumption. We complete the proof in this
section. The proof is rather inelegant and should be streamlined (an exercise for the
reader).

If no relation (16.3) between the three f - f contractions is assumed, then by the
primitiveness assumption the adjoint rep projection operator P 4 is of the form

){:A{I+B>—C+0:I}. (16.18)

Assume that the Jacobi relation does not hold; otherwise, this immediately reduces to
SO(3). The generators must be antisymmetric, as the group is a subgroup of SO(n).
Substitute the adjoint projection operator into the invariance condition (6.56) (or
(16.14)) for fas:

0= ]/EE + B)—EE + O:IEIE . (16.19)

Resymmetrize this equation by contracting with . This is evaluated
substituting (6.19) and using the relation (6.61):

I EEZO. (16.20)
The result is

Multiplying (16.19) by B, (16.21) by C, and subtracting, we obtain

oo > wa

We treat the case B + C' = 0 below, in (16.26).
If B+ C # 0, by contracting with f,,. we get B — C/2 = —1, and

0= ]/EE - )—EE : (16.23)

To prove that this is equivalent to the alternativity relation, we contract with ;
expand the 3-leg antisymmetrization, and obtain
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0= I I + 2)—C_. (16.24)

The triangle subdiagram can be computed by adding (16.19) and (16.21)

o<B+c>{§)—EE+:|£E}

and contracting with —C The result is

A = —%)\ (16.25)

Substituting into (16.24), we recover the alternativity relation (16.10). Hence, we
have proven that the primitivity assumption implies the alternativity relation for the
case B+ C #01in (16.22).

If B+ C =0, (16.19) takes the form

oﬁ+B{)—EE:I£E}. (16.26)

Using the normalization (7.38) and orthonormality @— conditions, we obtain

67
A
5 Ct T (T e

N= @ 47;5”:71 . (16.29)

The remaining antisymmetric rep

> <D
5n{I2_I 3:2 }(16.30)

n(n —3)(7 —n)
d= % ST (16.31)

(16.27)

has dimension
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The dimension cannot be negative, so d < 7. For n = 7, the projection operator
(16.30) vanishes identically, and we recover the alternativity relation (16.10).

The Diophantine condition (16.31) has two further solutions: n = 5 and n = 6.

The n = 5iseliminated by examining the decomposition of the traceless symmet-
ric subspace in (16.12), induced by the invariant Q = | . By the primitiveness

assumption, Q? is reducible on the symmetric subspace

HAIT T {00-D

0=(Q? + AQ + B1)P;.
Contracting the top two indices with ¢,;, and (7}).s, We obtain
9 13—nm 5 6—n

(Q 20-n< 2(2+n)(9—n)1)P2_0' (16.32)
For n = 5, the roots of this equation are irrational and the dimensions of the
two reps, induced by decomposition with respect to Q, are not integers. Hence,
n = b5 is not a solution. The n = 6 case appears to be related to Westbury’s
sextonians [340, 208, 209, 341] a 6-dimensional alternative algebra, intermediate
between the complex quaternions and octonions. | leave the proof of that as an
exercise to the reader.

16.4 CASIMIRSFOR G

In this section, we prove that the independent casimirs for G, are of order 2 and 6,
as indicated in table 7.1. As G5 is a subgroup of SO(7), its generators are antisym-
metric, and only even-order casimirs are nonvanishing.

The quartic casimir, in the notation of (7.9),

@ =trX* = Zl‘ﬂjl’kl’l tr (T 1 Th)

ijkl
can be reduced by manipulating it with the invariance condition (6.56)

@:—2( | ) = 2( | )+2@.

The last term vanishes by further manipulation with the invariance condition

@ - @ —0. (16.33)

The remaining term is reduced by the alternativity relation (16.10)

C-dT -s{0C-C)-

Thisyields the explicit expression for the reduction of quartic casimirs in the defining

T oo o

X = (tr x?)? (16.34)
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As the defining rep is 7-dimensional, the characteristic equation ( 7.10) reduces the
casimirs of order 8 or higher. Hence, the independent casimirs for G 5 are of order
2 and 6.

16.5 HURWITZ’STHEOREM

Throughout this text the field over which the defining vector space V' is defined
is either IR, the field of real numbers, or C, the field of complex numbers. Neither
quaternions (a skew field or division ring), nor octonions (a nonassociative algebra)
form a field.

Frobenius’s theorem states that the only associative real division algebras are the
real numbers, the complex numbers, and the quaternions. In order to interpret the
results obtained above, we need to define normed algebras.

Definition (Curtis [70]). A normed algebra A is an (n+1)-dimensional vector space
over a field F" with a product 2y such that
(1) z(cy) = (cx)y = c(xy), ceF
(ti)x(y+2) = zy+az, x,y,2z€A
(@ +y)z = 22 +yz,
and a nondegenerate quadratic norm that permits composition

(i1i)  N(vy)=N(z)N(y), N(z)€eF (16.35)

Here F' will be the field of real numbers. Let {eg, ey, ..., e, } be a basis of A over
F

T =1x0€0+ x1€1 + ...+ THE)Y, r, €F, e, €A. (16.36)

It is always possible to choose e, = I (see Curtis [70]). The product of remaining
bases must close the algebra:

eaeb:_dabI+fabceca dabafabceF a,...,c=1,2,....,n. (1637)
The norm in this basis is
N(z) = 22 + dapraws. (16.38)
From the symmetry of the associated inner product (Tits [ 325]),
N(z+y) — N(z) — N(y)
2 b)
it follows that —d., = (eq, e,) = (ep, €q) is Symmetric, and it is always possible
to choose bases e, such that

(z,y) = (y,2) = — (16.39)

€,€p = _6ab + fabcec~ (1640)
Furthermore, from

_(x%x):N(ﬂcy-i-x);N(ﬁC)N(y) :N(x)N(y+1);N(y)_1

=N(x)(y, 1), (16.41)
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it follows that f.p. = (eq, ep, e.) is fully antisymmetric. [In Tits’s notation [325],
the multiplication tensor f ;. is replaced by a cubic antisymmetric form (a,a’, a”),
his equation (14)]. The composition requirement ( 16.35) expressed in terms of bases
(16.36) is
0=N(zy) — N(@)N(y)
=TaTblYclYd (5ac5bd - 6ab60d + facefcbd) . (1642)
To make a contact with section 16.2, we introduce diagrammatic notation (factor
i4/6/a adjusts the normalization to (16.2))

fabc = Z\/5* . (1643)
«

Diagrammatically, (16.42) is given by

OZLJI%J_XgH 6.2

This is precisely the alternativity relation (16.10) we have proven to be nontrivially
realizable only in three and seven dimensions. The trivial realizations are n = 0 and
n =1, fape = 0. SO we have inadvertently proven

Hurwitz'stheorem [165, 166, 70, 169]: (n+1)-dimensional normed algebras over
reals exist only for n = 0, 1, 3, 7 (real, complex, quaternion, octonion).

We call (16.10) the alternativity relation, because it can also be obtained by
substituting (16.40) into the alternativity condition for octonions [ 304]
[ey2] = (xy)z — (yz) |
[wyz) = [zay] = [yza] = — [yz] . (16.45)
Cartan [43] was first to note that G'2(7) is the isomorphism group of octonions, i.e.,

the group of transformations of octonion bases (written here in the infinitesimal
form)

e; - (5ab + Z.Dab)eb ’
which preserve the octonionic multiplication rule (16.40). The reduction identity
(16.15) was first derived by Behrends et al. [ 18], in index notation: see their equation
(V.21) and what follows. Tits also constructed the adjoint rep projection operator
for G2(7) by defining the derivation on an octonion algebra as

Dz = (a,9)z = —5((e-9)- ) + Sy 2)e — (2, 2)y]
[Tits 1966, equation (23)], where
€y - €y = fabcCe, (16.46)
(ea,€p) = —0ab. (16.47)
Substituting x = x,e,, we find

1 1
(Dz)a = —3zayp (§5ab5bd + gfabefecd) Zc . (16.48)

The term in the brackets is just the G(7) adjoint rep projection operator P 4 in
(16.13), with normalization o« = —3.
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Chapter Seventeen

Ey family of invariance groups

In this chapter we continue the construction of invariance groups characterized by a
symmetric quadratic and an antisymmetric cubic primitive invariant. Inthe preceding
chapter we proved that the cubic invariant must either satisfy the alternativity relation
(16.11), or the Jacobi relation (4.48), and showed that the first case has SO(3) and
G, as the only interesting solutions.

Here we pursue the second possibility and determine all invariance groups that
preserve asymmetric quadratic (4.28) and an antisymmetric cubic primitive invariant

(4.46),
* = - i (17.)

with the cubic invariant satisfying the Jacobi relation (4.48)
>—< - /X\ = ;( (17.2)

1. Enumerate all Lie algebras defined by the primitives (17.1). The key idea here
is the primitiveness assumption (3.39). By requiring that the list of (17.1) isthe
full list of primitive invariants, i.e., that any invariant tensor can be expressed
as a linear sum over the tree invariants constructed from the quadratic and
the cubic invariants, we are classifying those invariance groups for which no
quartic primitive invariant exists in the adjoint rep (see figure 16.1).

Our task is twofold:

2. Demonstrate that we can compute all 3n-j coefficients (or casimirs, or vacuum
bubbles); the ones up to 12-j are listed in table 5.1. Due to the antisymmetry
(17.1) of structure constants and the Jacobi relation (17.2), we need to con-
centrate on evaluation of only the even-order symmetric casimirs, a subset of
(7.13):

(17.3)

\ [] \ \ [TT] \
Here cheating a bit and peeking into the list of the Betti numbers (table 7.1)
offers some moral guidance: the orders of Dynkin indices for the E g group are
2,8,12,14,18, 20, 24, 30. In other words, there is no way manual birdtracking
is going to take us to the end of this road.
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We accomplish here most of 1: the Diophantine conditions (17.13)—(17.19) and
(17.38)—(17.40) yield all of the E's family Lie algebras, and no stragglers, but we
fail to prove that there exist no further Diophantine conditions, and that all of these
groups actually exist. We are much further from demonstrating 2: the projection
operators (17.15), (17.16), (17.31)—(17.33) for the Eg family enable us to evaluate
diagrams with internal loops of length 5 or smaller, but we have no proof that
any vacuum bubble can be so evaluated. Should we be intimidated by existence of
Dynkin indices of order 30? Not necessarily: we saw that any classical Lie group
vacuum bubble can be iteratively reduced to a polynomial in n, regardless of the
number of its Dynkin indices. But for Fy, Eg, E7, and Eg such algorithms remain
unknown.

As, by assumption, the defining rep satisfies the Jacobi relation (17.2), the defining
rep is in this case also A, the adjoint rep of some Lie group. Hence, in this chapter
we denote the dimension of the defining rep by NV, the cubic invariant by the Lie
algebra structure constants —iC'; 1, and draw the invariants with the thin (adjoint)
lines, asin (17.1) and (17.2).

The assumption that the defining rep is irreducible means in this case that the Lie
group is simple, and the quadratic casimir (Cartan-Killing tensor) is proportional to
the identity

= Oy (17.4)

In this chapter we shall choose normalization C'4 = 1. The Jacobi relation (17.2)
reduces a loop with three structure constants

= % /K (17.5)

Remember diagram (1.1)? The one diagram that launched this whole odyssey? In
order to learn how to reduce such 4-vertex loops we turn to the decomposition of
the A® A space.

In what follows, we will generate quite a few irreducible reps. In order to keep
track of them, we shall label each family of such reps (for example, the eigenvalues
Am: Aco in (17.12)) by the generalized Young tableau (or Dynkin label) notation
for the Es irreducible reps (section 17.4). A review of related literature is given in
section 21.2.

17.1 TWO-INDEX TENSORS

The invariance group of the quadratic invariant (17.1) alone is SO(n), so as in
table 10.1, A® A decomposes into singlet, symmetric, and antisymmetric subspaces.

Of the three possible tree invariants in A9 A — A® A constructed from the cubic
invariant (17.1), only two are linearly independent because of the Jacobi relation
(17.2). The first one induces a decomposition of antisymmetric A ® A tensors into
two subspaces:

N R
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40 G4 ) e

1:PD+PH+P.+PS

As the other invariant matrix in A@ A — A® A we take

i ——e— |

Qijrl =

]—cpik.

17.7)

By the Jacobi relation (17.2), Q has zero eigenvalue on the antisymmetric subspace

4':': 1 1

so Q can decompose only the symmetric subspace Sym?2A.

The assumption that there exists no primitive quartic invariant is the defining
relation for the E's family. By the primitiveness assumption, the 4-index loop in-
variant Q2 is not an independent invariant, but is expressible in terms of any full
linearly independent set of the 4-index tree invariants Q ;5 k¢, Cijm Cmpie, and d;5’s
constructed from the primitive invariants (17.1),

+A::+B>—<+C +D ) C+E><:O.

Rotate by 90° and compare. That eliminates two coefficients. Flip any pair of adja-
cent legs and use the Jacobi relation (17.2) (i.e., the invariance condition). Only one
free coefficient remains:

1 ——— q _
(17.9)
Now, trace over a pair of adjacent legs, and evaluate 2- and 3-loops using (17.4)
and (17.5). This expresses the parameter ¢ in terms of the adjoint dimension, and
(17.9) yields the characteristic equation for Q restricted to the traceless symmetric

subspace,

1 5
--Q-———1|P,=0. 17.10
(Q GQ 3(N + 2) ) ( )
An eigenvalue of Q satisfies the characteristic equation

1 5
A—————==0
6 3(N +2) ’
S0 the adjoint dimension can be expressed as

M\ —

6 6— A1

As we shall seek for values of A such that the adjoint rep dimension N is an integer,
it is natural to reparametrize the two eigenvalues as
1 1 m

U A = 17.12
] ) | Gm_67 ( )

5 6— A1 6
N+2_m_60{7—2+7}. (17.11)
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a form that will lend itself to Diophantine analysis. In terms of the parameter m, the
dimension of the adjoint representation is given by

N =—2+60(m/6—2+6/m), (17.13)

and the two eigenvalues map into each other under m/6 — 6/m. Substituting

Ao~ \m= -z —— (17.14)

_ 6(m—6) 1 m

) {I . }PS (17.15)
_ 6(m—6) 1

- {j e }PS . (17.16)

In order to compute the dimensions of the two subspaces, we evaluate

@ 1 N +2
trP,Q = - N@ = (17.17)

(N +2)(1/ g+ N —1)
20 -Am/ra)

Dimension dyg is obtained by interchanging Agand A. Substituting (17.13), (17.12)
leads to

and obtain

dopy = tr Py = (17.18)

5(m —6)%(5m — 36)(2m — 9)
m(m + 6)
~270(m — 6)*(m — 5)(m — 8)

N m?2(m + 6)

ey =

dm (17.19)
To summarize, in absence of a primitive 4-index invariant, A® A decomposes
into five irreducible reps

1=Py+Pg+P,+Py+Pa. (17.20)

The decomposition is parametrized by rational values of m, and is possible only for
integer IV and dg that satisfy the Diophantine conditions (17.13), (17.19).

This happened so quickly that the reader might have missed it: our homework
problem is done. What we have accomplished by (17.9) is the reduction of the
adjoint rep 4-vertex loop in (1.1) for, as will turn out, all exceptional Lie algebras.
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17.2 DECOMPOSITION OF Sym?34

Now that you have aced the homework assignment (1.1), why not go for extra credit:
can you disentangle vacuum bubbles whose shortest loop is of length 6,

zz _ (17.21)

If you have an elegant solution, let me know. But what follows next is cute enough.

The general strategy for decomposition of higher-rank tensor products is as fol-
lows; the equation (17.10) reduces Q? to Q, P, weighted by the eigenvalues A,
Am- For higher-rank tensor products, we shall use the same result to decompose
symmetric subspaces. We shall refer to a decomposition as “uninteresting” if it
brings no new Diophantine condition. As Q acts only on the symmetric subspaces,
decompositions of antisymmetric subspaces will always be uninteresting, as was
already the case in (17.8). We illustrate this by working out the decomposition of
Sym3A.

The invariance group of the quadratic invariant (17.1) alone is SO(V), with
the seven reps Clebsch-Gordan decomposition of the SO(NV) 3-index tensors (ta-
ble 10.4): one fully symmetric, one fully antisymmetric, two copies of the mixed
symmetry rep, and three copies of the defining rep. As the Jacobi relation (17.2)
trivializes the action of Q on any antisymmetric pair of indices, the only serious
challenge that we face is reducing A3 within the fully symmetric Sym? A subspace.

As the first step, project out the A and A® A content of Sym? A:

3

6(N+1)(N ] ol
Pp= 5(N2 + 2N —5) I ' ‘ I (17.23)

P, projects out Sym®*A — A, and PH projects out the antisymmetric subspace

(17.6) Sym*A — VE' The ugly prefactor is a normalization, and will play no role
in what follows. We shall decompose the remainder of the Sym?® A space

P.=5S-Py— PH = (17.24)
by the invariant tensor Q restricted to the P,. remainder subspace

Q- 1 . in ! EQ:PTQPT. (17.25)

We can partially reduce Q2 using (17.10), but symmetrization leads also to a new

invariant tensor,
A 1 r T T r
Q2 —_—E| . E E' . I E (17 26)

A calculation that requires applications of the Jacobi relation (17.2), symmetry

identities (6.63) such as
ﬂ E _0, (17.27)

*—o

ly—ll
* o
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and relies on the fact that P,. contains no A, A® A subspaces yields

QB__{IIrlE {IIIE. (17.28)

Reducing by (17.10) and using Ag + A\ = 1/6 leads to

QO = g{gQQﬂLgE ! 1 E}—)\.)\EQ. (17.29)

The extra tensor can be eliminated by (17.26), and the result is a cubic equation for

Q:

_ (Q _ 1—181> (Q - )\.1) (Q - )\Djl) P,. (17.30)
The projection operators for the corresponding three subspaces are given by ( 3.48)
Pa= (1/18 — )\.)11/18 —\m) (Q B A'l) (Q B Aml) P
:_(T;T?E?Zr;f—);) <Q2 - _Q 2 66 )2 1) Pr, (17:31)
Pon= 1/18)1@. == ( ) Q- pl)P, (1732
:% (Q2 1;7_— 5 18(77”3—6)1> P
Ps= O — 1/181) o — \m) (Q 118 > (Q Al ) ro (1733
= (n”j(ff(i)(m ?12) (Q2 B Em B;Q + 08— 6)1> Pr

The presumption s (still to be proved for a general tensor product) that the interesting
reductions only occur in the symmetric subspaces, always via the Q characteristic
equation (17.10). As the overall scale of Q is arbitrary, there is only one rational
parameter in the problem, either A\ / \g Or m, or whatever is convenient. Hence all
dimensions and 3n-j coefficients (casimirs, Dynkin indices, vacuum bubbles) will
be ratios of polynomials in m.

To proceed, we follow the method outlined in appendix A. On P, PH subspaces

SQ has eigenvalues

SQsziTﬂz:l A =1/3 (17.34)
SQPazﬂ B:ﬁ Mg =1/6, (1735)

so the eigenvalues are A\ = 1/3, >\ =1/6, >\3 =1/18, \em = A\co Am = Ao
The dimension formulas (A.8) requwe evaluation of

* o

rSQ= _ —w (17.36)
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tr(SQ)* = = W . (17.37)

Substituting into (A.8) we obtain the dimensions of the three new reps:

_27(m — 5)(m — 8)(2m — 15)(2m — 9)(5m — 36)(5m — 24)
Ao = m2(3 4+ m)(12 + m) (17.38)

10(m — 6)*(m — 5)(m — 1)(2m — 9)(5m — 36)(5m — 24)

drm= 3m2(6 4+ m)(12 + m) (17.39)
ds— 5(m —5)(m —2&((7;1;2))(%2:17;) 15)(5m — 36) (36—m).  (17.40)

17.3 DIOPHANTINE CONDITIONS

As N in (17.13) is an integer, allowed m are rationals m = P/ built from @ any
combination of subfactors of the denominator 360 = 1-23-32.5, and the numerator
P =1,2,0r5,where Pand @ are relative primes. The solutions are symmetric under
interchange m /6 < 6/m, so we need to check only the 23 rationals m > 6. The
Diophantine conditions (17.13), (17.19), and (17.38) are satisfied only for m = 5,
8, 9, 10, 12, 18, 20, 24, 30, and 36. The solutions that survive the Diophantine
conditions form the Eg family, listed in table 17.1. The formulas (17.15), (17.16)
yield, upon substitution of IV, A5 and \g, the A® A Clebsch-Gordan series for the
Eg family (table 17.2).

Particularly interesting is the (36 — m) factor in the ds formula (17.40): positivity
of a dimension excludes m > 36 solutions, and vanishing of the corresponding
projection operator (17.33) for m = 36 implies a birdtrack identity valid only for
Eg, the presumed key to the homework assignment (17.21). For inspiration, go
through the derivation of (18.37), the analogous 6-loop reduction formula for F.
According to ref. [294], the smallest vacuum bubble that has no internal loop with
fewer than six edges has fourteen vertices and is called the “Coxeter graph."”

Birdtracks yield the Eg family, but they do not tie it into the Cartan-Killing
theory. For that we refer the reader to the very clear [29] and thorough exposition
by Deligne [89]. All the members of the family are immediately identifiable, with
exception of the m = 30 case. The m = 30 solution was found independently by
Landsberg and Manivel [209], who identify the corresponding column in table 17.1
as a class of nonreductive algebras. Here this set of solutions will be eliminated by
(19.42), which says that it does not exist as a semisimple Lie algebra for the F',
subgroup of Fs.

The main result of all this heavy birdtracking is that N' > 248 is excluded by the
positivity of ds, and N = 248 is special, as P3 = 0 implies existence of a tensorial
identity on the Sym? A subspace specific to Es. That dimensions should all factor
into terms linear in m is altogether not obvious.



GroupTheory  PUP Lucy Day version 8.8, March 2, 2008

Eg FAMILY OF INVARIANCE GROUPS 193
m 5 8 9 10 12 15 18 24 30 36
Al AQ G2 D4 F4 Ea E7 . Eg

N 0 3 8 14 28 52 78 133 190 248
ds 0 0 1 7 56 273 650 1,463 1,520 0
dg 0 -3 0 64 700 4,096 11,648 40,755 87,040 147,250
dm |0 0 27 189 1,701 10,829 34,749 152,152 392,445 779,247

Table 17.1 All solutions of Diophantine conditions (17.13), (17.19), and (17.38).

17.4 DYNKIN LABELS AND YOUNG TABLEAUX FOR Eg

A rep of Ejs is characterized by 8 Dynkin labels (a1asasasasagarag). The cor-
respondence between the Es Dynkin diagram from table 7.6, Dynkin labels, irre-
ducible tensor Young tableaux, and the dimensions [ 294] of the lowest reps is

8

— (a1azasagasasarag) < (17.41)

1 2 3 456 7

DH@E, amo| -

(248, 30380, 2450240, 146325270, 6899079264, 6696000, 3875, 147250)

Label a; counts the number of not antisymmetrized defining (= adjoint) represen-
tation indices. Labels ay through a5 count the number of antisymmetric doublets,
triplets, quadruplets, and quintuplets, respectively. Label a7 counts the number of
not antisymmetrized JJj indices, and ag the number of its antisymmetrized doublets.
The label ag counts the number of [].
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O] = O+ H + « +0+ W
2482 = 27000 + 30380 —+ 1 + 248 + 3875
Jel = O + B + H +[(W+ B
248 - 3875 = 248 4+ 3875 + 30380 4779247+ 147250
MeO -0+ H + O +[+ H +(m
27000 - 248 = 1763125 + 4096000 + 248 4+ 27000 + 30380 + 779247
He - +@+D+H+D]+l
+ (W + |
30380 - 248 = 4096000 + 2450240 + 248 + 30380 + 27000 -+ 3875
+ 779247 + 147250
ol - BN - - [+ W+ @ + B
+ = + H + [ +[N
38752 = 4881384 + 1 + 27000 + 3875 + 2450240 + 147250
+ 6696000 + 30380 + 248  + 779247
oM - (THW+ (W + | +@+[.+D
+[O+ H +m
e - @+ | +-m+E+H +m

TeO-(I I+ H+Tm+mm+ | +(m

+ +E.+Dj+‘ +=

+@+[.+D+H

Table 17.3 Some of the low-dimensional Es Clebsch-Gordan series [352].
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Chapter Eighteen

Eg family of invariance groups

In this chapter, we determine all invariance groups whose primitive invariant tensors
are 6¢ and fully symmetric d ., d*°°. The reduction of V@V space yields a rule
for evaluation of the loop contraction of four d-invariants (18.9). The reduction of
VeV yields the first Diophantine condition (18.13) on the allowed dimensions of the
defining rep. The reduction of V&V @V tensors is straightforward, but the reduction
of A® V space yields the second Diophantine condition (d4 in table 18.4) and
limits the defining rep dimension to n < 27. The solutions of the two Diophantine
conditions form the E¢ family consisting of g, A5, As + As, and A,. For the most
interesting Fg,n = 27 case, the cubic casimir (18.44) vanishes. This property of
Eg enables us to evaluate loop contractions of 6 d-invariants (18.37), reduce V® A
tensors (table 18.5), and investigate relations among the higher-order casimirs of E'g
in section 18.8. In section 18.7 we introduce a Young tableau notation for any rep of
Eg and exemplify its use in construction of the Clebsch-Gordan series (table 18.6).

18.1 REDUCTION OF TWO-INDEX TENSORS

By assumption, the primitive invariants set that we shall study here is

8 =a—e—D
a a

dape = A = dpge = dach s dabc = A . (181)

b c b c
Irreducibility of the defining n-dimensional rep implies

bed d
dabcd ¢ =Oé§a

«—O-«- =0 ——. (18.2)

The value of a depends on the normalization convention. For example, Freuden-
thal [130] takes o = 5/2. Kephart [187] takes o = 10. We find it convenient to set
ittoa = 1.

We can immediately write the Clebsch-Gordan series for the 2-index tensors. The
symmetric subspace in (9.4) is reduced by the d,;.d°? invariant:

EDE! S [t S0 S

The rep dimensions and Dynkin indices are given in table 18.1.
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—_——

- L {00
(e «
Jed = H e W e (1]
Es (000010) ® (000010) = (000100) @ (100000) @ (000020)
As (00010) ® (00010) = (00101) @ (01000) @ (00020)
Ay (02) ® (02) = (120 & (200 @ (04)
dimension n? =n(n—-1)/2 + n + n(n—1)/2
Es 272 = 351 + 27 + 351
As 152 = 105 + 15 + 105
Ao+ A 92 = 36 + + 36
As 6> = 15 + 6 + 15
index 2n/ = (n—=2)¢ + 1 + (n+1)¢
Fs 2.27-1 = 2 + 1 + 7
A5 2e1b =B+ L "
Az + Az 2:9- % = % + % + 5

Table 18.1 FEs family Clebsch-Gordan series Dynkin labels, dimensions, and Dynkin indices

for V®V. The defining rep Dynkin index ¢ is computed in (18.14).

By the primitiveness assumption, any V2 ® V2 invariant is a linear combination
of all tree invariants that can be constructed from the primitives:

TS

In particular,

One relation on constants A, B follows from a contraction with 6°:

R 1A ]

1
1:A+B”J2r .

The other relation follows from the invariance condition (6.53) on dgp.:

O

(18.6)
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= 2D DC
n a
label ol = . ® X o W
Eg (000010) ® (100000) = (000000) € (000001) &  (100010)
As (00010) ® (01000) = (00000) & (10001) &  (01010)
Ay (02) ® (20) = (00) & (11) & (22)
dimension n? = 1 + 4"751*91) + ("“’ii(;*”
Fs 277 = 1 + 78 + 650
As 152 = 1 + 35 + 189
As + As 92 = 1 + 16 + 64
Az 6 = 1 + 8 + 27
. _ 2(n+3)?
index 2nl = 0 + 1 + By
Es 2.27- 1 = 0 + 1 + 50 - 1
As 2-15-1 = 0 + 1 + 27- 1
Ao+ Az 2-9-1 = 0 + 1 + 16 3
Ay 2-6-3 = 0 + 1 + 5
1 _6_ 1 _ nt3
PA I — n+4+9 + 3 3a
——
[_H| , P
P DR e T0 D CTiX]
H +9

Table 18.2 Es family Clebsch-Gordan series for V@V . The defining rep Dynkin index ¢ is

computed in (18.14).

Contracting (18.5) with (7;)%, we obtain

1 A .
o? T
1 A B n—3
i 2t ATy

18.2 MIXED TWO-INDEX TENSORS

, B=

) 18.7
n—+3 ( )

Let us apply the above result to the reduction of V@V tensors. As always, they split
into a singlet and a traceless part (9.54). However, now there exists an additional
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d b d
ad _ :}{ , (18.8)
a C

which, according to (18.5) and (18.7), satisfies the characteristic equation

1n—-3 1
Q*=- 2n+3Q+§?(T+1) (18.9)

On the traceless V ® V' subspace, the characteristic equation for Q takes the form

1 3
P, (Q+§> (Q— ?> =0, (18.10)

where P is the traceless projection operator (9.54). The associated projection op-
erators (3.48) are

invariant matrix

Q- Q-+
Py=—"2P,, Pp= %Pg (18.11)
T2 nt3 n+3

Their birdtracks form and their dimensions are given in table 18.2.

P4, the projection operator associated with the eigenvalue — % is the adjoint rep
projection operator, as it satisfies the invariance condition (18.6). To compute the
dimension of the adjoint rep, we use the relation

THSD D) e

that follows trivially from the form of the projection operator P 4 in table 18.2. The
dimension is computed by taking trace (3.52),

dn(n — 1)
N = . 18.13
® T n+9 ( )

The 6-; coefficient, needed for the evaluation of the Dynkin index (7.27), can also
be evaluated by substituting (18.12) into

65@)

The Dynkin index for the Eg family defining rep is
_1In+9
6n-—3°

-C=0)

(18.14)

18.3 DIOPHANTINE CONDITIONSAND THE E¢ FAMILY

The expressions for the dimensions of various reps (see tables in this chapter) are
ratios of polynomials in n, the dimension of the defining rep. As the dimension of a
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rep should be a nonnegative integer, these relations are the Diophantine conditions
on the allowed values of n. The dimension of the adjoint rep (18.13) is one such
condition; the dimension of V; from table 18.4 another. Furthermore, the positivity
of the dimension d, restricts the solutions to n < 27. This leaves us with six
solutions: n = 3, 6,9, 15, 21, 27. As we shall show in chapter 21, of these solutions
only n = 21 is spurious; the remaining five solutions are realized as the ¢ row of
the Magic Triangle (figure 1.1).

In the Cartan notation, the corresponding Lie algebras are A, As + Ao, A5, and
Es. We do not need to prove this, as for E'g Springer has already proved the existence
of a cubic invariant, satisfying the relations required by our construction, and for the
remaining Lie algebras the cubic invariant is easily constructed (see section 18.9).
We call these invariance groups the E'¢ family and list the corresponding dimensions,
Dynkin labels, and Dynkin indices in the tables of this chapter.

18.4 THREE-INDEX TENSORS

The V@V @V tensor subspaces of U(n), listed in table 9.1, are decomposed by

invariant matrices constructed from the cubic primitive d .. in the following manner.

18.4.1 Fully symmetric V@V @V tensors

We substitute expansion from table 18.1 into the symmetric projection operator
- gE{FE-TE)

The V@V subspace is decomposed by the expansion of table 18.2:

TSE- 13 € IDREE ID-€F w

The last term vanishes by the invariance condition (6.53). To get the correct projector
operator normalization for the second term, we compute

l]E Blj_} 63.] 2 Cﬁl]
3 *3

1 3 n+9
1 2 _ -~ m | (181
3( + ) 30 13) (18.16)

Here, the second term is given by the I _I-subspace eigenvalue (18.10) of the in-
variant matrix Q from (18.8). The resulting decomposition is given in table 18.3.
18.4.2 Mixed symmetry VeV &V tensors

The invariant d . (T;)¢ satisfies

r’ﬁ @ (18.17)
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(20010)©(00200) ® ® @ (1000T) @ @ (11100) © (00000) & (0TOTO) & (0£000) = ¢(01000) R
(000700) ® ® & (100000) P &(017000) € (000000) € (0T000T) € (0£0000) = ¢(0T0000) 95
s|age| uuAg

M ool Mo, e X o[ Mo o o o[ Mol [ l=[el]a]
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This follows from the invariance condition (6.53):

A A DA

Hence, the adjoint subspace lies in the mixed symmetry subspace, projected by
(9.10). Substituting expansions of tables 18.2 and 18.3, we obtain

S e S e
P IPrGE ()D€ wn

The corresponding decompositionis listed in table 18.3. The other mixed symmetry
subspace from table 9.1 decomposes in the same way.

18.4.3 Fully antisymmetric V@V ®V tensors

All invariant matrices on ®V3 — ®V3, constructed from d,;. primitives, are
symmetric in at least a pair of indices. They vanish on the fully antisymmetric
subspace, hence, the fully antisymmetric subspace in table 9.1 is irreducible for F.

18.5 DEFINING © ADJOINT TENSORS

We turn next to the determination of the Clebsch-Gordan series for V. ® A reps. As
always, this series contains the n-dimensional rep

<)

- P+ P; (18.19)

:E: (18.20)

implies that VA also contains a projection onto the V@V space. The symmetric rep
in (18.3) does not contribute, as the d ;. invariance reduces (18.20) to a projection

onto the V' space:
1
l =-3 . (18.21)

The antisymmetrized part of (18.20),

R = II: R' = :I:l: (18.22)

Existence of the invariant tensor
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projects out the V' @V antisymmetric intermediate state, as in (18.3):

p, "9 1 on :n+9:£:[:1: >_,.< (18.23)
6 a«a 6ac

Here the normalization factor is evaluated by substituting the adjoint projection
operator P4 (table 18.2) into

6
T = =
R'R m n+ QGO‘I ' (18.24)

In this way, P5 in (18.19) reduces to P5 = Py + P,

P, — - Nia>-<—< - >E-< (18.25)

However, P . subspace is also reducible, as there exists still another invariant matrix

on V& A space:
Q= EK. (18.26)
a

We compute Q2P by substituting the adjoint projection operator and dropping the
terms that belong to projections onto V and V@V spaces:

1 : i
PCQQZEPC
6 - 1 n+3 5
:PC — . —
n+9{—(—+3 0 3ac }
6 n+3
=P, 1- —<—; ;—<——0
n+9{ 3ao }

6 n+3
=P, 1
n+9{ +3aai}
6 n+31
=P, 1- - . 18.27
n+9{ 6 aK_H)} (18.27)

The resulting characteristic equation is surprisingly simple:

P.(Q+1) (Q - i) =0. (18.28)

+9

The associated projection operators and rep dimensions are listed in table 18.4.

The rep V, has dimension zero for n = 27, singling out the exceptional group
E(27). Vanishing dimension implies that the corresponding projection operator
(4.22) vanishes identically. This could imply a relation between the contractions of
primitives, such as the G5 alternativity relation implied by the vanishing of (16.30).
To investigate this possibility, we expand P, from table 18.4.

We start by using the invariance conditions and the adjoint projection operator
P, from table 18.2 to evaluate

:II: =2 . 3:_!:': . (18.29)
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This yields

18.30
:D_)-C n -+ 9 ( )
P, n+9 9 n—+3 H
Next, motivated by the hindsight of the next section, we rewrite P 5 in terms of the
cubic casimir (7.44). First we use invariance and Lie algebra (4.47) to derive the

relation
1 2 i

We use the adjoint projection operator (18.11) to replace the d,,.d°?® pair in the

first term,
- nt9 +3 +

(18.32)
In terms of the cubic casimir (7.44), the P, projection operator is given by

H _
e A
J%M n /(\} . (18.33)

Substituting back into (18.30), we obtain

p n+9 (27—n 1 n+9
4_n+15{ 6 (n+9/‘\ 4 ) I}
(18.34)
We shall show in the next section that the cubic casimir, in the last term, vanishes
for n = 27. Hence, each term in this expansion vanishes separately for n = 27, and
no new relation follows from the vanishing of P 4. Too bad.
However, the vanishing of the cubic casimir for n = 27 does lead to several
important relations, special to the E's algebra. One of these is the reduction of the
loop contraction of 6 d.’s. For Fg (18.33) becomes

G PPy BT

The left-hand side of this equation is related to a loop of 6 d ,;.’s (after substituting
the adjoint projection operators):

:S d Z zajd—g:g Z (18.36)
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The right-hand side of (18.35) contains no loop contractions. Substituting the adjoint
operators in both sides of (18.35), we obtain a tree expansion for loops of length 6:

IS
|
I

(18.37)

500

_%{qi'—F%—F + + + }

At the time of writing this report, we lack a proof that we can compute any scalar
invariant built from d ;. contractions. However, the scalar invariants that we might
be unable to compute are of very high order, bigger than anything listed in table 5.1,
as their shortest loop must be of length 8 or longer, with no less than 30 vertices
in a vacuum bubble. (See table 2 in ref. [294] for the minimal number of vacuum
bubble vertices for a given shortest loop, or “girth.")

The Dynkin indices (table 18.4) are computed using (7.29) with A\ = defining
rep, p = adjointrep, p = A3, Ay

o1 20
l, = (5+N) d,,—N@. (18.38)
0

The value of the 6-5 coefficient follows from (18.28), the eigenvalues of the exchange
operator Q.

18.6 TWO-INDEX ADJOINT TENSORS

A® A has the usual starting decomposition (17.7). As in section 9.1, we study the
index interchange and the index contraction invariants Q and R:

Q:$7 R:II' (18.39)
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? S S T R T v
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The decomposition induced by R. follows from table 18.2; it decomposes the sym-
metric subspace P

1 1 |

By (9.80) R has no effect on the antisymmetric subspaces P 4, P,. The correspond-
ing projection operators are normalized by evaluating

1 C@T-n)n+1)
0,3m_ 2(n+9)2

1 O 0 12(n—3) m
SO O Gy T e

Such relations are evaluated by substituting the Clebsch-Gordan series of table 18.2

into H,which yields
N R R e

Equation (18.41) then follows by substitution into

_a®(n+1)(n—27)
g ﬁ = - . (18.42)

ThIS |mpI|es that the norm of the CUbIC casimir (7.44) is given by

_ n—|—1 27 (n+1)(27-n)
BN AT e M ST

P05|t|V|ty of the norm restricts n < 27.For Eg (n = 27), the cubic casimir vanishes

identically:
Eg : )\ =0. (18.44)

18.6.1 Reduction of antisymmetric three-index tensors

Consider the clebsch for projecting the antisymmetric subspace of V@V @V onto
A® A. By symmetry, it projects only onto the antisymmetric subspace of A® A:

H - EB:[ (18.45)

Furthermore, it does not contribute to the adjoint subspace:

E:_ﬂ+ﬂ:0' (18.46)

That both terms vanish can easily be checked by substituting the adjoint projection
operator (table 18.2). Furthermore, by substituting (18.37) we have

1
s n=27: EE:EEE:%EEE (18.47)

This means that for E¢ reps % and fully antisymmetrized 3-index tensors are equiv-
alent.



PUP Lucy Day version 8.8, March 2, 2008

GroupTheory

VOV 0 $3118S UepI0D-49salO Ajiwey 97 68T 9|qeL

e icYelE
"q ¢ U mwﬂanﬂ

:(Lg = w) 97 10} sio1elado uondafoid

mh’}
\
I
O
A
m‘*}
\
o
!
I

0T + 0T + 8 + 12 + 0 + 8 + T = .8 %
G+ S + o1 + + + 9T + T =91 i
08 + 08 + g€ +  Sor o+ 68T + Ge + T = ,8¢ v
GZ62 + 8L +  0evz  + 059 + 0 + T = 8L 9

+ N + + % + (LB -T)N + T =N uoisuawip

() + (€ + (@ + () + (tn) + (o0 = (11) oy
(otooz) + (eco0T0) + (TOOOT) + (200OZ) +  (0TOTO)  + (To00T) + (00000) = ,(1000T) v
(00700) + (700000) + (200000) +  (0TOOOT)  + + (000000) = ,(100000) 95

M ® X e XX @& Il | ® . @ ° = Xo X [ECE]

nu e u e u e M e u e U @ A  =yey

208



GroupTheory  PUP Lucy Day version 8.8, March 2, 2008

E¢ FAMILY OF INVARIANCE GROUPS 209

18.7 DYNKIN LABELS AND YOUNG TABLEAUX FOR Eg

Arrep of E is characterized by six Dynkin labels (a1 azasasasag). The correspond-
ing Dynkin diagram is given in table 7.6. The relation of the Dynkin labels to the
Young tableaux (section 7.9) is less obvious than in the case of SU(n), SO(n), and
Sp(n) groups, because for E's they correspond to tensors made traceless also with
respect to the cubic invariant d ;..

The first three labels a1, az, as have the same significance as for the U (n) Young
tableaux. a, counts the number of (not antisymmetrized) contravariant indices
(columns of one box m). ay counts the number of antisymmetrized contravariant
index pairs (columns of two boxes ). a3 is the number of antisymmetrized covari-
ant index triples. That is all as expected, as the symmetric invariant d ;. cannot
project anything from the antisymmetric subspaces. That is why the antisymmetric
reps in table 18.1 and table 18.3 have the same dimension as for SU(27).

However, according to (18.47), an antisymmetric contravariant index triple is
equivalent to an antisymmetric pair of adjoint indices. Hence, contrary to the U (n)
intuition, this rep is real. We can use the clebsches from (18.47) to turn any set of
3p antisymmetrized contravariant indices into p adjoint antisymmetric index pairs.
For example, for p = 2 we have

oall o

Hence, a column of more than two boxes is always reduced modulo 3 to a 3 antisym-
metric adjoint pairs (in the above example a3 = p), that we shall denote by columns
of two crossed boxes .

In the same fashion, the antisymmetric covariant index n-tuples contribute to a 3,
the number of antisymmetric adjoint pairs % a4 antisymmetrized covariant index
pairs [, and a5 (not antisymmetrized) covariant indices [J.

Finally, taking a trace of a covariant-contravariant index pair implies removing
both a singlet and an adjoint rep. We shall denote the adjoint rep by X1. The number
of (not antisymmetrized) adjoint indices is given by a¢. For example, an SU(n)
tensor z¢ € V@V decomposes into three reps of table 18.2. The first one is the
singlet (000000), that we denote by e. The second one is the adjoint subspace
(0000001) = X. The remainder is labeled by the number of covariant indices
a1 = 1, and contravariant indices a5 = 1, yielding (100010) = W] rep.

Any set of 2p antisymmetrized adjoint indices is equivalent to p symmetrized pairs
by the identity

1
2

=+ =+ = (18.49)
2p : ) p

This reduces any column of three %or more antisymmetric indices. We conclude that
any irreducible E tensor can, therefore, be specified by six numbers a1, as, ...as.
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An Eg tensor is made irreducible by projecting out all invariant subspaces. We
do this by identifying all invariant tensors with right indices and symmetries and
constructing the corresponding projection operators, as exemplified by tables 18.1
through 18.5. If we are interested only in identifying the terms in a Clebsch-Gordan
series, this can be quickly done by listing all possible nonvanishing invariant pro-
jections (many candidates vanish by symmetry or the invariance conditions) and
checking whether their dimensions (from the Patera-Sankoff tables [ 273]) add up.
Examples are given in table 18.6.

To summarize, the correspondence between the E¢ Dynkin diagram from ta-
ble 7.6, Dynkin labels, irreducible tensors, and the dimensions of the lowest corre-
sponding reps is

6
— (al, a2, as, a4, 0s, a6) —

1 2 3 4 5
(.,I,%,HD,@) < (27,351,2925,351, 27, 78) (18.50)

a1 = number of not antisymmetrized contravariant indices [ |
ae = number of antisymmetrized contravariant pairs =
. . I . | |
az = number of antisymmetrized adjoint index pairs % =l =
|
aq = number of antisymmetrized covariant pairs H
as = number of not antisymmetrized covariant indices []
ag = humber of not antisymmetrized adjoint indices X
For example, the Young tableau for the rep (2,1,3,2,1,2) can be drawn as
N DX (18.51)
The difference in the number of the covariant and contravariant indices
ai + 2as — 2a4 — as (mod 3) (1852)

is called triality. Modulo 3 arises because of the conversion of antisymmetric triplets
into the real antisymmetric adjoint pairs by (18.47). The triality is a useful check of
correctness of a Clebsch-Gordan series, as all subspaces in the series must have the
same triality.

18.8 CASIMIRSFOR Ej

In table 7.1 we have listed the orders of independent casimirs for F'¢ as 2,5, 6, 8, 9,
12. Here we shall use our construction of £¢(27) to partially prove this statement.
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27 - 27 351 351 27
Jed=H +[J+m
27 - 27 = 650 1 78

351 - 27 5824 2925 650 78

HeDO=H+§ M+

27 - 351 7371 27 1728 351
me-0. 0 .z

27 - 78 1728 27 351
JexX=[x+ 0 +}

7 - 78 2925 2430 1 78 650

Koo b= & K+ e+ +H

351 - 27 5824 3003 650

e O = H +I 1+ W0

27 - 351 7722 27 1728

W[ =W+ [] +[IX

650 - 27 7722 7371 351 351 1728 27
meO-m -8 cpm | O

331 - 78 17550 351 351 7311 1728

27
H@X: +H+|:\:|+.+=:|+.E

2925 - 27 51975 1728 17550 7371 351
feo-g R

Table 18.6 Examples of the Es Clebsch-Gordan series in terms of the Young tableaux.
Various terms in the expansion correspond to projections on various subspaces,
indicated by the Clebsch-Gordan coefficients listed on the right. See tables 18.1
through 18.5 for explicit projection operators.
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By the hermiticity of T3, the fully symmetric tensor d;;;, from (18.43) is real, and

O FO -z =0 (18.53)

By (18.43), this equals

_a® (n+1)(27—n)
O L O=-5"31 (1859

The cubic casimir d;;, vanishesidentically for E.
Next we prove that the quartic casimir for E is reducible. From table 18.1
expression for the adjoint rep projection operator we have

3 n+9 | ——
>_,.<_n+3{— y :]i+§_(_+><}, (18.55)
which yields
3 n+9 1~
_n+3{_ : §+ﬁ+3 } (18.56)

Now the quartic casimir. By the invariance (6.53)

-

[ \ I
The second term vanishes by the invariance (6.53).

T .

[ ] [ ]
T T 1T
Substituting (18.32), we obtain

n+9 2
= — . 18.59

For Eg the cubic casimir vanishes, and consequently the quartic casimir is a square
of the quadratic casimir:

1
Feg:tr X* = E(m~X2)2 : (18.60)

The quintic casimir tr X for Es must be irreducible, as it cannot be expressed as
a power of tr X2, We leave it as an exercise to the reader to prove that tr X © is
irreducible.

The reducibility of tr X 7 can be demonstrated by similar birdtrack manipulations,
but as the higher irreducible casimirs are beyond manual calculation (according to
table 7.1 the Betti numbers for Eg are 2, 5, 6, 8, 9, 128, 9, 12), this task is better
left to a computer [294].
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18.9 SUBGROUPS OF Ej

Why is A2(6) in the Eg family? The symmetric 2-index rep (9.2) of SU(3) is
6-dimensional. The symmetric cubic invariant (18.2) can be constructed using a pair

of Levi-Civita tensors,
}k = ) (18.61)

Contractions of several d ;" can be reduced using the projection operator properties
(6.28) of Levi-Civita tensors, yielding expressions such as

o I e
1 4 > 15NN~—
a:[:zg{ } 4 —g/,\}’ ec.  (18.63)

The reader can check that, for example, the Springer relation (18.65) is satisfied.

Why is A5(15) in the E¢ family? The antisymmetric 2-index rep (9.3) of A5 =
SU(6) is 15-dimensional. The symmetric cubic invariant (18.2) is constructed using
the Levi-Civita invariant (6.27) for SU (6

Y MHW (18.64)

The reader is invited to check the correctness of the primitiveness assumption ( 18.5).
All other results of this chapter then follow.

Is Ay + A2(9) in the Eg family? Exercise for the reader: unravel the Ao + Ao
9-dimensional rep, construct the d ;. invariant.
18.10 SPRINGER RELATION

Substituting P4 into the invariance condition (6.53), one obtains the Springer rela-
tion [314, 315]

Yoyt

The Springer relation can be used to eliminate one of the three possible contractions
of three ds.’s. For the G4 family it was possible to reduce any contraction of three

. (18.65)
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Jabe’s by (16.15); however, a single chain of three d,;.’s cannot be reducible. If it
were, symmetry would dictate a reduction relation of the form

=A !H]+[“! . (18.66)

Contracting with d ;. one finds that contractions of pairs of d .;.’s should also be

reducible:
=A A\JFI ! ! ) (18.67)

Contractions of this relation with d ;. and 67 yields n = 1, i.e,, reduction relation
(18.66) can be satisfied only by a trivial 1-dimensional defining rep.

18.11 SPRINGER’S CONSTRUCTION OF Ejg

In the preceding sections we have given a self-contained derivation of the £/ family,
in notation unfamiliar to the handful of living experts on this subject. Here we
translate our results into the more established algebraic notation, and identify the
relations already given in the literature.

Definition (Springer [314, 315]). Let V, V be finite-dimensional vector spaces
paired by an inner product (z, x) (see section 3.1.2). Assume existence of symmetric

trilinear forms (x,y, z), (Z, 9, z). If z,y € V, there exists by duality z x y € V
such that

3wy, 2) = (z X y,2), (18.68)

with the z x ¢ € V product defined similarly. Assume that the x product satisfies
Soringer relation [130]

(x x2) x (xxz) = (z,2,2) x (18.69)

(together with the corresponding formula for 2 — Z). Springer proves that the ex-
ceptional simple Jordan algebra of [3 x 3] hermitian matrices  with octonionic
matrix elements [129, 130, 304, 168] satisfies these assumptions, and that the char-
acteristic equation for [3 x 3] matrix « yields the relation (18.69). Our purpose here
is not to give an account of Freudenthal theory, but to aid the reader in relating the
birdtrack notation to Freudenthal-Springer octonionic formulation. The reader is
referred to the cited literature for the full exposition and proofs.

The nonassociative multiplication rule for elements = can be written in an or-
thonormal basis x = xz,e%, T = x%e,,

(eq,e’) =0°,  a,b=1,2,......,27. (18.70)
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Expand z, z and define [150]
e x e’ = dce, . (18.71)

Expressed in this basis, (18.69) is the Springer relation (18.65), with o = 5/2.
Freudenthal and Springer prove that (18.69) is satisfied if d**° is related to the
Jordan product

e® . eb _ Ciabcec
by
dbe = dobe — %[5‘”’ tr(e®) 4 0% tr(e®) + 6" tr(e®)] + % tr(e®) tr(e”) tr(e®).

The defining n = 27 representation of E is the group of isomorphisms that leave
(Z,y) = obay, and (z,y,2) = d®*x.yp2. invariant. The “derivation” (4.25)
V2®V =V ® A — V is given by Freudenthal, equation (1.21) in ref. [ 129]:

Dz=[z,g]z2=27 x (x x 2) — %(gj,z)gc— é(g,@z.
Expressed in the basis (18.70), this is the adjoint projection operator P 4 (table 18.2),
(D2)q = =3 zay’(Pa)t 2e - (18.72)
The invariance of the z-product is given by Freudenthal as
(Dz,xz x x) = 0.

Expressed in the basis (18.70) this is the invariance condition (6.53) for d .
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Chapter Nineteen

F, family of invariance groups

In this chapter we classify and construct all invariance groups whose primitive invari-
ant tensors are a symmetric bilinear d;, and a symmetric trilinear d .., satisfying
the relation (19.16).

Take as primitives a symmetric quadratic invariant d,; and a symmetric cubic
invariant d,;.. As explained in chapter 12, we can use d,; to lower all indices. In the
birdtrack notation, we drop the open circles denoting symmetric 2-index invariant
tensor d°*, and we drop arrows on all lines:

A’ =day = :

[~}
dabc:dbac = dacb = /k = i . (191)
b C

The defining n-dimensional rep is by assumption irreducible, so
daedea=— 3— = = a8 (19.2)
dapp = —O = 0. (19.3)

Were (19.3) nonvanishing, we could use —{) (C— to project outa 1-dimensional
subspace, violating the assumption that the defining rep is irreducible. The value of
« depends on the normalization convention (Schafer [ 304] takes a = 7/3).

19.1 TWO-INDEX TENSORS

dape 15 a clebsch for V@V — V, so without any calculation the V' ® V' space is
decomposed into four subspaces:

_ 1D >
HIC-2>—<-:D ¢}

1=Pg+P, + Py +P3. (19.4)

We turn next to the decompositions induced by the invariant matrix

1
Qab,cd = o | : (19.5)
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I shall assume that Q does not decompose the symmetric subspace, i.e., that its
symmetrized projection can be expressed as

- T0) C oo

Together with the list of primitives (19.1), this assumption defines the £, family.
This corresponds to the assumption (16.3) in the construction of G'». | have not been
able to construct the £, family without this assumption.

Invariance groups with primitives d .y, dqp. that do not satisfy (19.6) do exist.
The familiar example [73, 41] is the adjoint rep of SU (n), n > 4, where d ;.. is the
Gell-Mann symmetric tensor (9.87).

Let us first dispose of the possibility that the invariant 4-tensors in (19.6) satisfy
additional relationships. Symmetrizing (19.6) in all legs, we obtain

1;A[%:(B+C)[9:g]. (19.7)

Neither of the tensors can vanish, as contractions with ¢’s would lead to

o= = amo 0:% S az0. (99

If the coefficients were to vanish, 1 — A = B + C' = 0, we would have

w(IT>=-TC D C e

Antisymmetrizing the top two legs, we find that

1
a—Bi:H-F to10

In this case the invariant matrix Q of (19.5) can be eliminated,

I:>_<+nil{x_) C} (19.11)

and does not split the antisymmetric part of (19.4). In that case the adjoint rep of
SO(n) would also be the adjoint rep for the invariance group of d ;.. However, the
invariance condition

0= (19.12)

cannot in this case be satisfied for any positive dimension n:

o&:o é@:nﬂo. (19.13)
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Hence the coefficients in (19.7) are nonvanishing, and there are no additional rela-
tions beyond (19.6). The coefficients are fixed by tracing with § .-

1 2
- [% = — . (19.14)

Expanding the symmetrization operator, we can write this relation as

éﬂ+%>_<:ni2j:[+ni23 C’ (19.15)

or, more symmetrically, as

>_< I \Y/ n+2{> C+ ><}

2
dabedecd + dadedebc + dacedebd = n—_f2(§ab60d + 5ad6bc + 6a06bd) . (1916)

Insection 19.3, we shall show that this relation can be interpreted as the characteristic
equation for [3x 3] octonionic matrices. This is the defining relation for the F4
family, equivalent to the assumption (19.6).

The eigenvalue of the invariant matrix Q on the n-dimensional subspace can now
be computed from (19.15):

T D—ra—-
2 n+2
1 1n—2
_}__ 2n+2 (19.17)

Let us now turn to the action of the invariant matrix Q on the antisymmetric
subspace in (19.4). We evaluate Q2 with the help of (19.16) and the identity (6.60),

replacing the top dgpedecq pair by

n+2{m+aI}

1n—6 2
AlQP-——Q - 1. 19.18
0= (Q 2n+2Q n+2 > ( )

The roots are Ag = —1/2, Ag = 4/(n + 2), and the associated projectors yield the
adjoint rep and the antisymmetric rep

P@:nflo {I+"+2 } (19.19)
_:jfo {I__:II} (19:20

Py isthe projection operator for the adjoint rep, as it satisfies the invariance condition
(19.12). The dimensions of the two representations are
3n(n —2) n(n+ 1)(n + 2)

N =trPy = =trPy = 19.21
tPe=—=""0 + BT"Pp S0 0 192D

and the Dynkin index of the defining representation is
_ n+ 10 (19.22)

5n —22°
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19.2 DEFINING ® ADJOINT TENSORS

The V ® A space always contains the defining rep:
n n
:m>‘—< +{ TN }
1= P + Py (19.23)

We can use d,p. and (77;) 45 to projecta V@V subspace from V@ A:

1 Cc
Ria,bc = | . (1924)
a b

By the invariance condition (19.12), R projects the symmetrized V ® V' subspace

onto V'
H - —% | . (19.25)

Hence, R maps the P subspace only onto the antisymmetrized V @ V':
P;:R=RA

P7I - :!:I: . (19.26)

The V ® V' space was decomposed in the preceding section. Using (19.19) and

(19.20), we have
j:lj - H + >i< . (19.27)

The P~ space can now be decomposed as
P;=Ps+ Py +Pyg

—%H:éﬂ+é}—a>—§<+m(ww

Sy eaey
}i{:m—ﬂ, (19.29)

and the normalization factors are the usual normalizations (5.8) for 3-vertices. An
interesting thing happens in evaluating the normalization for the Pg subspace: sub-

Here,

stituting (19.19) into %% we obtain
1 1 26 —n
N@‘@ " 4(n+10)°

1 . 6(n—2)
%@_ (n+2)(n+10) " (19:30)
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The normalization factor is a sum of squares of real numbers:

== aQ > [(T)ucdaca(Ty)]” > 0. (19.31)

,5,a
Hence, either n = 26 or n < 26. We must distinguish between the two cases: as the
corresponding clebsches are identically zero,

n:26:—<X:O, (19.32)

and P7 subspace in (19.28) does not contain the adjoint rep, (19.28) is replaced by

— dg 5
n—2: —a—N>¢—<:@>-<—<+P10. (19.33)

Another invariant matrix on V® A space can be formed from two (7;)., generators:

Q- K . (19.34)

We compute P10Q? by substituting the adjoint projection operator by (19.19),
using the characteristic equation (19.15) and the invariance condition (19.12), and
dropping the contributions to the subspaces already removed from P :

Q)

=P10
2 .
= P10 T {3 (vanishing) } . (19.35)
Hence Q? satisfies a characteristic equation
B g, n+4 6
0=Pio (Q TR n+101> (19:36)
withroots ;1 = —1, a2 = 6/(n~+10), and the corresponding projection operators
n+ 10 6
P, =P 1- 19.37
o (- ). 19.37)
10
Pro=Pio Yt q). (19.38)

+ 16
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To use these expressions, we also need to evaluate the eigenvalues of the invariant
matrix Q on subspaces Pg, Pg, and Py :

n N CA 1
QP = — E: / = (Z — 7) P = Pg. (19.39)

We find it somewhat surprising that this eigenvalue does not depend on the dimension

v AL

__ Np _ 30-2)
T o T 2m+10)°
n—2_8
QPy=— Py (19.40)

These relations are valid for any n.

Now we can evaluate the dimensions of subspaces P 11, P1>. We obtain forn < 26
n(n —2)(n—5)(14 — n)

2(n+10)(n+16) ’
3n(n+1)(n —5)

n+16 '

A small miracle has taken place: only n = 26 and n < 14 are allowed. However,
dio < 0forn < 5does not exclude the n = 2 solution, as in that case the dimension
of the adjointrep (19.19) is identically zero, and V®A decomposition is meaningless.

For n = 26, Py is defined by (19.33), the adjoint rep does not contribute, and
the dimensions are given by

n=26: d11 = 0, dlg = 1053. (1943)

d11 =tr P11 = (1941)

dig=trPis =

(19.42)

If a dimension is zero, the corresponding projection operator vanishes identically,
and we have a relation between invariants:

O=P11=P10<é1—Q)Z(l—PG—Pg) (él—Q)

Substituting the eigenvalues of Q, we obtain a relation specific to F4

+2) /_%4):':( (19.44)

Hence, for F; Lie algebra (n = 26) the two invariants, R in (19.26) and @) in (19.34),
are not independent.

By now the (very gifted) reader has the hang of it, and can complete the calculation
on her own: if so, the author would be grateful to see it. The 2-index adjoint tensors
decomposition proceeds in what, by now, is a routine: one first notes that A® A
always decomposes into at least four reps (17.6). Then one constructs an invariant
tensor that satisfies a characteristic equation on the A® A space, and so on. Some of
these calculations are carried out in ref. [ 74], sections 15, 20, and appendix, p. 97.

1
=26 = -
n y g
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Oe0= [0 + 0+ ¢ +H+ X

262 = 324 + 26 + 1 + 273 + 52
NeJ= K1 + O + H
52-26 = 1053 + 26 + 273
e = XX + % + X + e + H

522 = 1053 + 1274 + 52 + 1 + 324
Me0 =0+ + 0 +H + 010+ XJ
324-26 = 2652 + 4096 + 26 + 273 + 324 + 1053
H@D: ‘+§+E+H+@+D+XD
273.26 — 4096 + 1274 + 324 + 273 + 52 + 26 + 1053

Table 19.1 Kronecker products for the five lowest-dimensional reps of Fy, where 0O is the
26-dimensional defining rep, and = the 52-dimensional adjoint rep. See Patera et
al. [236] and ref. [194] for tabulations of higher-order series.

19.3 JORDAN ALGEBRA AND F,(26)

As in section 18.11, consider the exceptional simple Jordan algebra of hermitian
[3x 3] matrices with octonionic matrix elements. The nonassociative multiplication
rule for traceless octonionic matrices = can be written, in a basis z = z ,e,, as

da
€,€6p = €peq = ?bI‘Fdabceca Cl,b,C € {1723- --526}7 (1945)

where tr(e,) = 0, and I is the [3x 3] unit matrix. Traceless [3x 3] matrices satisfy
the characteristic equation

x3 — % tr(z?)x — % tr(z®)I=0. (19.46)

Substituting (19.45) we obtain (19.14), with normalization« = 7/3. Itis interesting
to note that the Jordan identity [304],

(zy)z® = 2(ya?) (19.47)

(which defines Jordan algebra in the way Jacobi identity defines Lie algebra) is

a trivial consequence of (19.14). Freudenthal [130] and Schafer [304] show that

the group of isomorphisms that leave forms tr(zy) = dapxexp and tr(xyz) =

dabeTaypze invariant is F,(26). The “derivation” (i.e,, Lie algebra generators) is
given by Tits:

Dz = (x2)y —x(zy) [eq. (28) inref. [325]]. (19.48)
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Substituting (19.45), we recover the n = 26 case of the adjoint rep projection
operator (19.19):

1
(Dz)d = —Talp <§(5ad6bc - 6a05bd) + (dbcedead - dacedebd)> Zec - (1949)

19.4 DYNKIN LABELS AND YOUNG TABLEAUX FOR Fy

The correspondence between the f, Dynkin diagram from table 7.6, the four Dynkin
labels, irreducible tensor Young tableaux, and the dimensions of the lowest corre-
sponding reps is

1 2 3 4

- (a1a2a3a4) —

(g, % : H : D) o (52,1274, 273,26). (19.50)
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Chapter Twenty

E- family and its negative-dimensional cousins

Parisi and Sourlas [269] have suggested that a Grassmann vector space of dimension
n can be interpreted as an ordinary vector space of dimension —n. As we have seenin
chapter 13, semisimple Lie groups abound with examples in whichan n — —n sub-
stitution can be interpreted in this way. An early example was Penrose’s binors [ 280],
reps of SU(2) = Sp(2) constructed as SO(—2), and discussed here in chapter 14.
This is a special case of a general relation between SO(n) and Sp(—n) established
in chapter 13; if symmetrizations and antisymmetrizations are interchanged, reps
of SO(n) become Sp(—n) reps. Here we work out in detail a 1977 example of a
negative-dimensions relation [ 74], subsequently made even more intriguing [ 78] by
Cremmer and Julia’s discovery of a global £'7 symmetry in supergravity [68].

We extend the Minkowski space into Grassmann dimensions by requiring that
the invariant length and volume that characterize the Lorentz group (SO(3,1) or
SO(4) — compactness plays no role in this analysis) become a quadratic and a
quartic supersymmetric invariant. The symmetry group of the Grassmann sector
will turn out to be one of SO(2), SU(2), SU(2) x SU(2) x SU(2), Sp(6), SU(6),
SO(12), or E7, which also happens to be the list of possible global symmetries of
extended supergravities.

As shown in chapter 10, SO(4) is the invariance group of the Kronecker delta g ,,,,
and the Levi-Civita tensor ¢ ,,.+,; hence, we are looking for the invariance group of
the supersymmetric invariants

(2,9)=gu"y",
($7 Y, z, w) = euuopxuyyzawp ) (201)

where p, v, ... =4,3,2,1,—1,—2,..., —n. Our motive for thinking of the Grass-
mann dimensions as —n is that we define the dimension as atrace (3.52), n = 4/;, and
ina Grassmann (or fermionic) world each trace carries aminus sign. For the quadratic
invariant g,,,, alone, the invariance group is the orthosymplectic O.Sp(4,n). This
group [177] is orthogonal in the bosonic dimensions and symplectic in the Grass-
mann dimensions, because if g,,,, is symmetric in the v, 1 > 0 indices, it must be
antisymmetric in the v, u < 0 indices. In this way the supersymmetry ties in with
the SO(n) ~ Sp(—n) equivalence developed in chapter 13.

Following this line of reasoning, a quartic invariant tensor e .., ,, antisymmetric in
ordinary dimensions, is symmetric in the Grassmann dimensions. Our task is then
to determine all groups that admit an antisymmetric quadratic invariant, together
with a symmetric quartic invariant. The resulting classification can be summarized
by

symmetric g,,,, + antisymmetric f,,,.., (20.2)
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(A1 + A1)(4), G2(7), Bs(8), D5(10)
antisymmetric f,,,, + symmetric d,,,», :
S0O(2), A1(4), (A1 + A1 + A1)(8), C5(14), A5(20), Ds(32), £7(56)

where the numbersin (') are the defining rep dimensions. The second case generates
a row of the Magic Triangle (figure 1.1).

From the supergravity point of view, it is intriguing to note that the Grassmann
space relatives of our SO(4) world include £, SO(12),and SU(6) in the same reps
as those discovered by Cremmer and Julia. Furthermore, it appears that all seven
possible groups can be realized as global symmetries of the seven extended super-
gravities, if one vector multiplet is added to N = 1, 2, 3, 4 extended supergravities.

In sections. 20.1-20.3, we determine the groups that allow a symmetric quadratic
invariant together with an antisymmetric quartic invariant. The end result of the
analysis is a set of Diophantine conditions, together with the explicit projection
operators for irreducible reps. In section 20.4, the analysis is repeated for an anti-
symmetric quadratic invariant together with a symmetric quartic invariant. We find
the same Diophantine conditions, with dimension n replaced by —n, and the same
projection operators, with symmetrizations and antisymmetrizations interchanged.

Parenthetically, you might wonder, how does one figure out such things without
birdtracks? I cannot guess, and | suspect one does not. In this chapter the E ; family
is derived diagrammatically, following ref. [ 74], but as experts with a more algebraic
mindset used to find birdtracks very foreign, in ref. [ 78] we hid our tracks behind
the conventional algebraic notation of Okubo [255]. The reader can decide what is
easier to digest, algebraic notation or birdtracks.

20.1 SO(4) FAMILY

According to table 10.1, the flip o from (6.2) together with the index contraction 7'
from (10.8) decompose V@V of SO(n) into singlet (10.11), traceless symmetric
(10.10), and antisymmetric adjoint (10.12) subspaces, VeV = Vi @ V, @ V3. Now
demand, in addition to the above set of V4 invariant tensors, the existence of a fully
antisymmetric primitive quartic invariant,

fuupéz_fuupé = _fupu6 = _fuu6p = m
Frnd _ m . (20.3)

As fu,5 1s of even rank and thus anticyclic, f,.,5 = — f. 5., we deploy the black
semicircle birdtrack notation (6.57) in order to distinguish the first leg.

Theonly VeV — V®V invariant matrix that can be constructed from the new
invariant and the symmetric bilinear tensor (10.2) is

1 = g foeog™ = f Patg ;f (20.4)

(we find it convenient to distinguish the upper, lower indices in what follows). Due
to its antisymmetry, the Q invariant does not decompose the symmetric subspaces
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(10.10), (10.12):
PiQ=0, P:Q= (1+0)Q 0.

The Q invariant can, however, decompose the antisymmetric V3 subspace (10.12)
into the new adjoint subspace A and the remaining antisymmetric subspace V7:

adjoint' Pa= Q + bWP3, b= N/ds
}C :?K: e
antlsymmetrlc = (1-0)P;

>+< :jt: 1—b:l::, (20.5)

where d3 = n(n — 1)/2 is the dimension of the SO(n) adjoint representation, b is
fixed by N = tr P4, and the NV is the dimension of the adjoint representation of
the f,..,s invariance subgroup of SO(n), to be determined.

By the primitivenessassumption (3.39) no further invariant matrices € @V 4 exist,
linearly independent of Q. In particular, Q2 is not independent and is reducible to
Q and P 3 by the projection operator indempotency,

0=P% - P, =Q%+ (20— 1)Q+b(b—1)P3

0= SIS+ 1) :jt: (b — 1):]:. (20.6)

Rewriting the indempotency relation as
P2 =(Q+01)Py=Py

yields the eigenvalue A 4 = 1 — b of the matrix Q on the adjoint space A:

m =(1-5)—. (20.7)

Condition (20.6) also insures that the V' — V matrix

2\uv' % v
(Q )up, - nd 6
is proportional to unity. Were this not true, distinct eigenvalues of the Q2 matrix
would decompose the defining n-dimensional rep, contradicting the primitiveness
assumption that the defining rep is irreducible.
Now antisymmetrize fully the relation (20.6). The P35 contribution drops out, and
the antisymmetrized Q2 is reduced to Q by:

W+ - DY) =0 (20.8)

The invariance condition (4.35)

0= \@ (20.9)
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yields the second constraint on the Q?:

B gy oo

The quadratic casimir for the defining rep and the “4-vertex™ insertion are computed
by substituting the adjoint projection operator P 4,

s - - @ --AT e

2
In this way the invariance condition (20.9)

b
W 2= Y =0 (20.12)

fixes the value of b = 6/(16 — n). The projection operators (20.5)

adjoint: Pa= Q+ Ps (20.13)
16 —n
. . 10—n
antisymmetric: Pr=—-Q + 16 P; (20.14)
—n

decompose the n(n — 1)/2-dimensional adjoint space V3 of SO(n) into two sub-

spaces of dimensions

3n(n—1) n(n —1)(10 — n)
16—n ’ 2(16 — n)
This completes the decomposition VoV = V; @ Vs @ A® Vs. From the Diophan-

tine conditions (20.15) it follows that the subspaces V4, V7 have positive integer

dimension only for n = 4,6, 7, 8, 10. However, the reduction of A ® V' undertaken
next eliminates the n = 6 possibility.

N=trPy = d7 =tr Py = (20.15)

20.2 DEFINING ® ADJOINT TENSORS

The reduction of the V&V space, induced by the symmetric g ,,,, and antisymmetric
fuvep invariants, has led to very restrictive Diophantine conditions (20.15). Further
Diophantine conditions follow from the reduction of higher product spaces @V 4. We
turn to the reduction of (adjoint) @ (defining)=A® V' Kronecker product, proceeding
as in sections 9.11, 10.2, 18.5, and 19.2.

The three simplest A ® V' — A ® V invariant matrices one can write down are
the identity matrix, and

R = gz . Q= gz :K. (20.16)

R projects onto the defining space, A® V. — V — A ® V. Its characteristic

equation
N
R? — >_Q_< ~ R,
n
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and the associated projection operators (3.48)

n n
Py = N>-<—< . Py = -2 , (20.17)

decompose A @ V = Vg & Vg, with dimensions
dg =n, dg =tr Pg = n(N — 1) . (2018)
The characteristic equation for

is computed by inserting the adjoint rep projection operator (20.13) and using the
invariance condition (20.9) and the Q eigenvalue (20.7). The result (projected onto
the Vg subspace) is a surprisingly simple quadratic equation,

0=(Q*—(1/2+b)Q+b/2)Py = (Q—1/2) (Q+b)Py, (20.19)
with roots

Ao =—-b, A1 =1/2. (20.20)
The n(N — 1)-dimensional space Vy is now decomposed into
Py=Pio + P11

B G a G

(the prefactors are the 3-vertex normalizatlons (5.8)), Wlth the associated projection

operators (3.48)
2(16 — n 1
Pio= (7_71) <—Q + 51) Py,

28

2(16 — n) 6
Piu=——-= 1)Py. 20.22
n=—e <Q+16—n) 9 ( )

This completes the decomposition V @ V4 = Vs @ Vi & V1. To compute the
dimensions of Vg, V11 subspaces, evaluate
trPoQ = —2n(2+n)/(16 —n), (20.23)
to, finally, obtain
3 2 —4
dig=tr P19 = nn+2)n—4) ;
28—n
32n(n—1)(n+2)
di1=trPy; = . 20.24
=tk (16 —n)(28 —n) ( )
The denominators differ from those in (20.15); of the solutions to (20.15), d =
4,7,8,10 are also solutions to the new Diophantine conditions. All solutions are

summarized in table 20.1.

20.3 LIE ALGEBRA IDENTIFICATION

As we have shown, symmetric g,,,, together with antisymmetric f,,,, invariants
cannot be realized in dimensions other than d = 4, 7, 8, 10. But can they be realized
at all? To verify that, one can turn to the tables of Lie algebras of ref. [273] and
identify these four solutions.
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Rep Dimension A+ Ay Go Bs Ds
V =defining n 4 7 8 10
A=adjoint N = 2=l 3 14 21 45
Vz=antisym. % 3 7 7 0

Vs=symmetric ([pt2)(n-1) 9 27 35 54
Vio Sn(nt2)(n=1) 0 27 48 120
Vix $n(n1)(nt2) 8 64 112 320

(16—n)(28—n)

Table 20.1 Rep dimensions for the SO(4) family of invariance groups.

20.3.1 SO(4) or A; + A, algebra

The first solution, d = 4, is not a surprise; it was SO(4), Minkowski or euclidean
version, that motivated the whole project. The quartic invariant is the Levi-Civita
tensor ¢,,,,,,. Even so, the projectors constructed are interesting. Taking

Qﬁg = gusgépgso‘u'y s (2025)
one can immediately calculate (20.6):
Q% =4P;. (20.26)
The projectors (20.14) become
1 1 1 1
Po=-P3+- P;=-P3— - 20.27
a=5Ps+7Q, Pr=c-P;—-Q, ( )

and the dimensions are N = d; = 3. Also both P 4 and P satisfy the invariance
condition, the adjoint rep splits into two invariant subspaces. In this way, one shows
that the Lie algebra of SO(4) is the semisimple SU(2) + SU(2) = A; + A;.
Furthermore, the projection operators are precisely the n, 77symbols used by ’t Hooft
[164] to map the self-dual and self-antidual SO(4) antisymmetric tensors onto
SU(2) gauge group:

1 1
) 4 ) 5 5
(PA)ﬁp = Z (555V —g" Jup + et up) = _Z 77115 Nap s

1 1_
(P7)£‘2 =1 (5ﬁ5g - 9”59up — 8“5Vp) =-1 Nk nag . (20.28)
The only difference is that instead of using an index pair #, ’t Hooft indexes the
adjoint spaces by a = 1, 2, 3. All identities, listed in the appendix of ref. [ 164], now
follow from the relations of section 20.1.

20.3.2 Definingrep of G

The 7-dimensional rep of G5 is a subgroup of SO(7), so it has invariants §;; and
€wsopas- INaddition, it has an antisymmetric cubic invariant [43, 73] f.,, the in-
variant that we had identified in section 16.5as the multiplication table for octonions.
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Rep Dynkin index A+ Ay &> Bs Ds
— o 16—n 1 1 1 1
V=defining 1(nTo) 5 1 = H
A=adjoint 1 1 1 1 1
Vz=antisym. (oomild) 0 1 1 0
Vs=symmetric 1(16 —n) 3 2 2 3

7(16—n)(n—4) 9 14 7

Vio ~A@E-n - 1 5 3
8(2n+7) 46

Vll —(287’n) 5 8 ? 12

Table 20.2 Dynkin indices for the SO(4) family of invariance groups.

The quartic invariant we have inadvertently rediscovered is

fuupa = Euupoaﬁwfaﬁ’y . (2029)

Furthermore, for G'5 we have the identity (16.15) by which any chain of contractions
of more than two f,3, can be reduced. Projection operators of section 20.1 and
section 20.2 yield the G2 Clebsch-Gordan series (16.12):

TRT=1027T01407, TR14=7T027064.

20.3.3 SO(7) eight-dimensional rep

We have not attempted to identify the quartic invariant in this case. However, all the
rep dimensions (table 20.1), as well as their Dynkin indices (table 20.2), match Bs
reps listed in tables of Patera and Sankoff [273].

20.3.4 SO(10) ten-dimensional rep

This is a trivial solution; P4, = P35 and P; = 0, so that there is no decomposition.
The quartic invariant is

f,uudp = 5#u0paﬁ'y§w50a5,75,w§ =0, (2030)

where Cq3,+5,w¢ are the SO(10) Lie algebra structure constants.

This completes our discussion of the “bosonic” symmetric g, antisymmetric
eapys INVariant tensors. We turn next to the “fermionic” case: antisymmetric g ,,,,,
SYmmetric eqg-s.

204 E; FAMILY

We have established in chapter 12 that the invariance group of antisymmetric
quadratic invariant £, is Sp(n), n even. We now add to the set of Sp(n) invariants
(12.8) a fully symmetric 4-index tensor,

d,uvp& = du,upé = d,upué = d,uuép . (2031)



GroupTheory  PUP Lucy Day version 8.8, March 2, 2008

E7 FAMILY AND ITS NEGATIVE-DIMENSIONAL COUSINS 231

All of the algebra of invariants and Kronecker product decomposition that follow is
the same as in section 20.1, and is left as an exercise for the reader. All the dimensions
and Dynkin indices are the same, with n — —n replacement in all expressions:

6 10+n

Pa= Q + mPZS, P;=- Q + mpg, (2032)
3n(n+1) 360
N=——F=3n-4 20.
61n o BYErI, (20.33)
n(n+1)(n + 10)
dr=
2(16 +n)

There are seventeen solutions to this Diophantine condition, but only ten will survive
the next one.

20.4.1 Defining ® adjoint tensors

Rewriting section 20.2 for an antisymmetric f,,,, symmetric d,..., is absolutely
trivial, as these tensors never make an explicit appearance. The only subtlety is that
for the reductions of Kronecker products of odd numbers of defining reps (in this
case ®V3), additional overall factors of —1 appear. For example, it is clear that
the dimension of the defining subspace dg in (20.18) does not become negative;
n — —n substitution propagates only through the expressions for A 4, A7 and V.
The dimension formulas (20.24) become

~3n(n—2)(n+4) ds — 32n(n—2)(n+1)
B n+28 T T T+ 16)(n + 28)
Out of the seventeen solutions to (20.33), ten also satisfy this Diophantine condition;
d=2,4,8,14,20, 32,44, 56, 164, 224. d = 44, 164, and 224 can be eliminated [ 74]
by considering reductions along the columns of the Magic Triangle and proving that
the resulting subgroups cannot be realized; consequently the groups that contain
them cannot be realized either. Only the seven solutions listed in table 20.3 have
antisymmetric f,,,, and symmetric d,,, ,s invariants in the defining rep.

dio (20.34)

20.4.2 Lie algebraidentification

It turns out that one does not have to work very hard to identify the series of solutions
of the preceding section. SO(2) is trivial, and there is extensive literature on the
remaining solutions. Mathematicians study them because they form the third row of
the Magic Square [130], and physicists study them because E7(56) — SU(3). x
SU(6) once was one of the favored unified models [ 149]. The rep dimensions and
the Dynkin indices listed in table 20.3 agree with the above literature, as well as
with the Lie algebra tables [273]. Here we shall explain only why E'7 is one of the
solutions.

The construction of E'7, closest to the spirit of our endeavor, has been carried out
by Brown [34, 353]. He considers an n-dimensional complex vector space V with
the following properties:

1. V possesses a nondegenerate skew-symmetric symplectic invariant {x, y} =
Juvzty”
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2. V possesses a symmetric 4-linear form ¢(x, y, 2, w) = d opaty” 27w

3. If the ternary product T(z, y, z) is defined on V' by
{T(z,y,2),w} = q(z,y, z,w), then
H{T(2,2z,y), T(y,v.y)} = {z.y}a(z, vy, y)

The third property is nothing but the invariance condition (4.36) for d,,. .5 as can be
verified by substituting P4 from (20.32). Hence, our quadratic, quartic invariants
fulfill all three properties assumed by Brown. He then proceeds to prove that the
56-dimensional rep of E'; has the above properties and saves us from that labor.

The E; family derived above is a row of the Magic Triangle (figure 1.1). This
is an extension of the Magic Square, an octonionic construction of exceptional Lie
algebras. The remaining rows are obtained [74] by applying the methods of this
monograph to various kinds of quadratic and cubic invariants, while the columns
are subgroup chains. In this context, the Diophantine condition (20.33) is one of
a family of Diophantine conditions discussed in chapter 21. They all follow from
formulas for the dimension of the adjoint rep of form

N:%(k—G)(l—G)—72+360 (%4‘%) . (20.35)

(20.33) is recovered by taking & = 24, n = 21— 16. Further Diophantine conditions,
analogous to (20.34), reduce the solutionsto k,1 = 8,9, 10,12, 15, 18,24, 35. The
corresponding Lie algebras form the Magic Triangle (figure 1.1).

20.5 DYNKIN LABELS AND YOUNG TABLEAUX FOR E»

A rep of E; is characterized by seven Dynkin labels (ajasasasasacar). As in
section 18.7, tracing with respect to the invariant tensor d,,,,,; modifies the Young
tableaux for Sp(56). We leave details as an exercise for the reader. The correspon-
dence between the £z Dynkin diagram from table 7.6, Dynkin labels, irreducible
tensor Young tableaux, and the dimensions of the lowest corresponding reps is

7

N

1 2 3 4 56

(@BEHBow)-

(133, 362880, 365750, 27664, 1539, 56, 912) .

(a1a2a3a4a5a6a7) — (2036)

The Clebsch-Gordan series for products of the five lowest-dimensional reps of £ 7
are given in table 20.4.
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Os=[0+ H + » + X
562 = 1463 + 1539 + 1 + 133
Xeld= X1+ [ + 1
7448 =133-56 = 6480 4+ 56 + 912
(Med=T1+ ! + 0 + X
81928 = 1463 - 56 = 24320 + 51072 + 56 + 6480
HeO=-HH + O +0+x1+ ®
86184 = 1539 - 56 = 51072 + 27664 + 56 4+ 6480 + 912
NoM= KX + B + K+ o +
17689 = 1332 = 7371 + 8645 + 133 + 1 + 1539
‘ L
@[1= ] + = + H + + [+ %

1549184 = 27664 - 56 = 980343 + 365750 + 1539 + 152152 4 40755 4 8645

Table 20.4 The Clebsch-Gordan series for Kronecker products of the five lowest-dimensional

reps of .
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Chapter Twenty-One

Exceptional magic

The study of invariance algebras as pursued in chapters 16—-20 might appear a rather
haphazard affair. Given a set of primitives, one derives a set of Diophantine equa-
tions, constructs the family of invariance algebras, and moves onto the next set of
primitives. However, a closer scrutiny of the Diophantine conditions leads to a sur-
prise: most of these equations are special cases of one and the same Diophantine
equation, and they magically arrange all exceptional families into a triangular array
I call the Magic Triangle.

21.1 MAGIC TRIANGLE

Our construction of invariance algebras has generated a series of Diophantine condi-
tions that we now summarize. The adjoint rep dimensions (19.21), (18.13), (20.33),
and (17.13) are

360
F, famil N =3n—
1 family 3n 36+n+10
360
E¢ famil N=4n—-40+ —
6 d " +n—|—9
. 360
E7 famil N=3n—-45+ ————
7 1amily Y SR
. 360
Eg family N =10m — 122+ —. (21.1)
m

There is a striking similarity between the Diophantine conditions for different fam-
ilies. If we define

Fy family m=n-+10

Egfamily m=n+9

E; family m=n/2+8, (21.2)
we can parametrize all the solutions of the above Diophantine conditions with a sin-
gleinteger m (seetable 21.1). The Clebsch-Gordan series for AV Kronecker prod-

ucts also show a striking similarity. The characteristic equations (17.10), (18.28),
(19.36), and (20.19) are one and the same equation:

(Q-1) (Q + %1> P.=0. (21.3)

Here P,. removes the defining and @12 subspaces, and we have rescaled the Eg
operator Q (17.10) by factor 2. The role of the Q operator is only to distinguish
between the two subspaces; we are free to rescale it as we wish.
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m |8 9 10 12 15 18 24 30 36
Ey 0 0 3 8 21 . 92
Eg 0 2 8 16 35 3 78
E; |0 3 9 21 35 66 9 133
Eg |3 8 14 28 52 78 133 190 248

= O

Table 21.1 All defining representation n values allowed by the Diophantine conditions (21.1)
and (21.4). The m = 30 column of nonreductive algebras, not eliminated by the
Diophantine conditions of chapters 16-20, is indicated by smaller script.

In the dimensions of the associated reps, the eigenvalue 6 /m introduces a new
Diophantine denominator m + 6. For example, from (17.19), table 18.4, (19.42),
and (20.34), the highest-dimensional rep in V' ® A has dimension (in terms of
parametrization (21.2)):

15120
F, family 3 6)% — 156 6) + 2673 — ——
4 y 3(m+6) (m+6) + mt6
15120
Eg family 4 6)% — 188 6) + 2928 — ——
6 y 4(m+6) (m+6) + p——
15120
E; family 2{6 6)% — 246 6) + 3348 — ——
7 y {(m+) (m+6) + m+6}
. 27-3 11-1512
Eg family  50m? — 1485m + 19350 + 60 _ o 0. (21.4)
m m+6

These Diophantine conditions eliminate most of the spurious solutions of (21.1);
only them = 30, 60, 90, and 120 spurious solutions survive butare in turn eliminated
by further conditions. For the E'g family, the defining rep is the adjoint rep, V' ®
V=V®A=A® A, so the Diophantine condition (21.4) includes both 1/m
and 1/(m + 6) terms. Not only can the four Diophantine conditions (21.1) be
parametrized by a single integer m; the list of solutions (table 21.1) turns out to be
symmetric under the flip across the diagonal. F'4 solutions are the same as those in
the m = 15 column, and so on. This suggests that the rows be parametrized by an
integer /, in a fashion symmetric to the column parametrization by m. Indeed, the
requirement of m < ¢ symmetry leads to a unique expression that contains the four
Diophantine conditions (21.1) as special cases:

(£ —6)(m —6) 360 n 360

79
3 2t

We take m = 8,9,10,12,15,18, 24,30, and 36 as all the solutions allowed in
table 21.1. By symmetry, ¢ takes the same values. All the solutions fill up the Magic
Triangle (figure 21.1). Within each entry, the number in the upper left corner is IV,
the dimension of the corresponding Lie algebra, and the number in the lower left
corner is n, the dimension of the defining rep. The expressions for n for the top four
rows are guesses. The triangle is called “magic” partly because we arrived at it by

N = (21.5)
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o 3A
' 0 2 !
0 |1 8
: U | A,
0 3
o 0 3 14G
' 0 1 3A1 7 2
I 2 9 28
! 2U(1) 3A;[ D,
' 0 1 2 4 8
o 0 3 8A 21 52F
' 0 2 5A1 8 2 14C3 26 4
0 ]o 2 8 16 35 78
; 20| A, | 28| As| Eq
' 0 1 3 6 9 15 27
0 1 3 9 21 35 66 133
: U | Al 3A| Cs| As| Dg| E4
) 2 4 8 14 20 32 56
3 8 14 28 52 78 133 248E
3A1 8A2 14GZ 28D4 52':4 78E6 133E7 248 8

Figure 21.1 Magic Triangle. The admissible solutions of Diophantine conditions (21.4) and
(21.5) form a triangular array that includes all of the exceptional Lie group
families derived in chapters 16-20. Within each entry the number in the upper
left corner is IV, the dimension of the corresponding Lie algebra, and the number
in the lower left corner is n, the dimension of the defining rep. The “Magic
Square” is framed by the double line.
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magic, and partly because it contains the Magic Square, marked by the dotted line
in figure 21.1.

21.2 A BRIEF HISTORY OF EXCEPTIONAL MAGIC

To live outside the law you got to be honest.
—Bob Dylan

Literature on group theory is vast; hard work builds character and anybody who
has discovered, for example, that a trace is a useful symmetry invariant writes a
paper about it. The good thing about it is that there are many wonderful papers
to study. The bad thing about it is that hardly anybody tracks that vast literature,
and so | soldiered on with this monograph happy and undisturbed, garnering three
citations to the Magic Triangle over the two decades. Theory of compact Lie groups
is complete for nearly a century (Peter-Weyl theorem), and hardly anyone thinks
there is a problem there, let alone a solution to it.

In 1996 Deligne changed this by rediscovering in part the construction of ex-
ceptional Lie groups described here. In quantum field theory, analytic continuation
in space dimension n is a given [161]. In the classical group theory of Frobenius,
Cartan, and Weyl, each group is a discrete object, with its own specific structure;
Deligne’s theory of G'L,, tensor categories freed the representation theory of these
shackles, and phrased analytic continuation in n (described here in chapter 9) in a
language comfortable to mathematicians. Deligne was a student of Tits; quantum
field theory has flirted with exceptional groups for at least 50 years, and so from
both directions one had to explore how continuation in n fits into the theory of
exceptional groups.

Deligne isamuch admired prodigy (he joined IHES at age 19), and the exceptional
drought was followed by new contributions that this monograph makes no attempt to
incorporate. | apologize to colleagues whose important papers | have either overseen
or misunderstood. Where this monograph fits into the larger picture is explained in
chapter 1. A brief history of birdtracks is given in section 4.9.

There are many strands woven into the tapestry of “exceptional magic" to which
this monograph is a small contribution. First noted by Rosenfeld [ 297], the Magic
Square was rediscovered by Freudenthal, and made rigorous by Freudenthal and
Tits [129, 130, 325].

The construction of the exceptional Lie algebras family described here was ini-
tiated [73, 74] in 1975-77. The “Magic Triangle” and the methods used to derive
were published in the 1981 article [78] using the E; family (chapter 20) and its
SO(4)-family of “negative dimensional” cousins as an example. The derivation of
the Es family presented in chapter 17, based on the assumption of no quartic prim-
itive invariant (see figure 16.1), was inspired by S. Okubo’s observation [ 258] that
the quartic Dynkin index (7.33) vanishes for the exceptional Lie algebras. In the
intervening years several authors have independently reached similar conclusions.

In 1986 K. Meyberg [240, 241] also showed that the absence of a primitive
quartic casimir leads to uniform decomposition of adjoint Sym ? A and obtained the
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Eg family of chapter 17.

E. Angelopoulosiis credited for obtaining (in an unpublished paper written around
1987) the Cartan classification using only methods of tensor calculus, by proving that
the quadratic casimir has only two eigenvalues on the symmetric subspace Sym 2 A
(the 1981 result [78] described here in section 17.1). Inspired by Angelopoulos
and ref. [73], in his thesis M. El Houari applied a combination of tensorial and
diagrammatic methods to the problem of classification of simple Lie algebras and
superalgebras[111]. As Algebras, Groups, and Geometriesjournal does not practice
proofreading (all references are of form [?,2,7]), precise intellectual antecedents to
this work are not easily traced. In a subsequent publication E. Angelopoulos [12]
used the spectrum of the casimir operator acting on A® A to classify Lie algebras,
and, inter alia, also obtained the E's family of chapter 17 within the same class of
Lie algebras.

In a Shimane University 1989 publication, N. Kamiya [179] constructs the F,
FEg, Er, and Eg subset of the Eg family from “balanced Freudenthal-Kantor triple
systems” of dimensions npx = 14,20, 32, 56. In particular, on p. 44 he states an
algebra dimension formula equivalent to (17.13) under substitution npx = 2(m —
8).
In a 1995 paper P. Deligne [179] attributed to P. Vogel [332] the observation
that for the five exceptional groups the antisymmetric A A A and the symmetric
Sym? A adjoint rep tensor product decomposition, P + PH and Py + P + Py
in table 17.2, can be decomposed into irreducible reps in a “uniform way," and that
their dimensions and casimirs are rational functions of the dual Coxeter number a,
related to the parameter m of (17.12) by

a=1/(m—-6). (21.6)

Here a is a = ®(a, &), where & is the largest root of the rep, and & the canonical
bilinear form for the Lie algebra, in the notation of Bourbaki [ 29]. Deligne conjec-
tured the existence of a tensor category that models the A-module structure of @A.
A consequence of the conjecture would be decomposition and dimension formulas
for the irreducible modules in @A4%, V.

This consequence was checked on computer by Deligne, Cohen, and de Man [ 62,
90] for all reps up to @A>. They note that “miraculously for all these rational func-
tions both numerator and denominator factor in Q[a] as a product of linear fac-
tors.” For representations computed so far, this is an immediate consequence of the
methods used here to decompose symmetric subspaces (chapter 17). For @A4S the
conjecture is open.

Cohen and de Man have also observed that D, should be added to the list, in
agreement with our definition of the E's family, consisting of A, As, G, Dy, Fy,
Es, E7, and Es. Their computations go way beyond the results of chapter 17, all
of which were obtained by paper and pencil birdtrack computations performed on
trains while commuting between Gothenburg and Copenhagen. In all, Cohen and
de Man give formulas for 25 reps, seven of which are computed here.

In the context of chapter 17, the dual Coxeter number (21.6) is the symmetric
space eigenvalue of the invariant tensor Q defined in (17.12). The role of the tensor
Q is to split the traceless symmetric subspace, and its overall scale is arbitrary. In
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chapter 17 scale was fixed in (17.4) by setting the value of the adjoint rep quadratic
casimirto C'4 = 1. Deligne [89] and Cohen and de Man [62] fix the scale by setting
A+ Am = 1, so their dimension formulas are stated in terms of a parameter related
to the A used here by Acanr = 6. They refer to the interchange of the roots
A < Ag as “involution.” Typical “translation dictionary” entries: my (17.38) is
their A, (17.39) is their Y, (17.40) is their C*, etc.

After a prelude on “tensor categories” that puts ruminations of this monograph
into perspective, and a GL(n) warm-up in which V@V @V irreducible reps pro-
jection operators and dimensions (here table 9.3 of section 9.11) are computed
via a birdtrack-evaluated algebra of invariants multiplication table (3.42) (see sec-
tion 9.11.1), in the 1999 paper [63] A. M. Cohen and R. de Man perform birdtrack
computations of section 17.1, and arrive at the same projection operators and dimen-
sion formulas. While they diagonalize the full 5x5 algebra of invariants multipli-
cation table, in this monograph the reduction proceeds in two steps, first to SO(n)
irreducible reps, which in turn are decomposed into £'s family irreducible reps. This
facilitates by-hand computations, but the primitiveness condition (17.10) is more
elegantly stated by Cohen and de Man prior to reductions, here (17.9). They also
fail to find an algorithm for reducing E's family vacuum bubbles whose loops are of
length 6 or longer, and speculate that expansion in terms of tree diagrams will not
suffice, and a new symmetric 6-index primitive invariant will have to be included
in the decomposition of 24°. However, on the way to decomposing the @42 space
(section 17.2) 1 do eliminate the 6-loop diagram, i.e., replace

3

by shorter loops (double line refers to Vg from (17.15) — details are a bit tedious for
this overview). This should imply a 6-loop reduction formula analogous to (17.9),
that | have not tried to extract. In the same spirit, according to table 7.1 of orders of
independent casimirs [30, 288, 134, 54, 294] (the Betti numbers) for the Eg family
the next nonvanishing Dynkin index (beyond the quadratic one) corresponds to a
loop of length 8.

Cohen and de Man acknowledge in passing that diagrammatic notation “is well
known to physicists (cf. Cvitanovi¢ [83]),” though I have to admit that the converse
is less so: the invariant tensors basis of section 3.3.1 is “the ring Endc(X), a free
Z[t]-module,” birdtracks morph to “morphisms,” and so on. Today no one has leisure
for reading source papers in foreign tongues, so Cohen and de Man verify the E'g
family projection operators and dimension formulas of chapter 17 by the birdtrack
computations identical to those already given in ref. [83].

Inspired by conjectures of Deligne, J. M. Landsberg and L. Manivel [ 203, 204,
205, 206, 210] utilize projective geometry and the triality model of Allison [9] to in-
terpret the Magic Square, recover the known dimension and decomposition formulas
of Deligne and Vogel, and derive an infinity of higher-dimensional rep formulas, all
proved without recourse to computers. They arrive at some of the formulas derived
here, including [209] the m = 30 column of nonreductive algebras in table 17.1.
They deduce the formula (21.5) conjectured above from Vogel’s [333] “universal
Lie algebra” dimension formula (proposition 3.2 of ref. [ 205]), and interpret m, ¢
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asm =3(a+4),¢=3(b+4),wherea,b=0,1,2,4,6,8 are the dimensions of
the algebras used in their construction (in case a or b # 6 these are composition
algebras). For m > 12 this agrees with the Magic Square.

In 2002 Deligne and Gross [92] defined the Lie groups (i.e., specified the isogeny
class) whose Lie algebras were previously known to fit into the Magic Triangle
of figure 21.1. B. H. Gross credits his student K. E. Rumelhart [301, 91] with
introducing the Magic Triangle in the 1996 Ph.D. thesis. Also in 2002, an intriguing
link between the ¢-state Potts models and the E's family was discovered by Dorey
et al. [96]. For a related recent study of Es and E7 families, see MacKay and
Taylor [226].

So much for group theory from my myopic, birdtracks perspective: Are there any
physical applications of exceptional magic?

21.3 EXTENDED SUPERGRAVITIESAND THE MAGIC TRIANGLE

In chapter 20 I showed that the extension of Minkowski space into negative dimen-
sions yields the E; family. These n — —n relations and the Magic Triangle arose
as by-products of an investigation of group-theoretic structure of gauge theories
undertaken in ref. [73], written up in more detail in the 1977 Oxford preprint [ 74].
I obtained an exhaustive classification, but are there any realizations of it? Surpris-
ingly, every entry in our classification appears to be realized as a global symmetry
of an extended supergravity.

In 1979 Cremmer and Julia [68] discovered that in N = 8 (or N = 7) super-
gravity’s 28 vectors, together with their 28 duals, form a 56 multiplet of a global
E symmetry. This is a global symmetry analogous to SO(2) duality rotations of
the doublet (F,,,, F'x,,,) in j#* = 0 sourceless electrodynamics. The appearance of
E» was quite unexpected; it was the first time an exceptional Lie group emerged
as a physical symmetry, without having been inserted into a model by hand. While
the classification | have obtained here does not explain why this happens, it sug-
gests that there is a deep connection between the extended supergravities and the
exceptional Lie algebras. Cremmer and Julia’s N = 7, 6, 5 global symmetry groups
E;,50(12),SU(6) are included in the present classification. Furthermore, vectors
plus their duals form multiplets of dimension 56, 32, 20, so they belong to the defin-
ing reps in our classification. While for N' < 4 extended supergravities, the numbers
of vectors do not match the dimensions of the defining reps, Paul Howe has pointed
out that with one additional vector multiplet N = 1,2, ..., 7 extended supergravi-
ties exhaust the present classification. These observations are summarized in table
5 of ref. [78].

In 1980 B. Julia introduced a different Magic Triangle [ 174, 175, 176, 160] un-
related to the one described here. His work was stimulated by a 1979 Gibbons and
Hawking remark on gravitational instantons and Ehlers symmetry, and the vague
but provocative remarks of Morel and Thierry-Mieg. The two triangles differ: Ju-
lia’s “disintegration (i.e. oxidation) for E,, cosets” triangle is based on real forms
that match up only with the [3x 3] subsquare of the Rosenfeld-Freudenthal Magic
Square. I still do not know whether there is any relation between extended super-
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gravities and the construction presented here.

EPILOGUE

Quantum Field Theory relies heavily on the theory of Lie groups, and so | went
step-by-step through the proof of the Cartan-Killing classification. Frankly, | did
not like it. The proofs were beautiful, but Cartan-Wey! explicit Lie algebra matrices
were inconvenientand unintuitive for Feynmann diagram computations. There must
be more to symmetries observed in nature than a set of Diophantine conditions on
Cartan lattices. So | junked the whole thing, and restarted in the 19th century,
looking for conditions on Lie groups that would preserve invariant quantities other
than length and volume. Imagine the pleasure of rediscovering all exceptional Lie
algebras, arranged in a single family, in the very first step of the construction, as
invariance groups that preserve an antisymmetric cubic invariant (figure 16.1)!

Monotheistic cults seek a single answer to all questions, and to a religious temper-
ament Eg is the great temptress. My own excursion into invariances beyond length
and volume yielded no physical insights. Nature is too rich to follow a single tune;
why should it care that all we know today is a bit of differential geometry? It presents
us with so many questions more fundamental and pressing than whether E'g is the
mother or the graveyard of theories, so my journey into exceptional magic stops
here.

Almost anybody whose research requires sustained use of group theory (and it
is hard to think of a physical or mathematical problem that is wholly devoid of
symmetry) writes a book about it. They, in their amazing variety of tastes, flavors,
and ethnicities fill stacks in science libraries. My excuse for yet another text is that
this book is like no other group-theory textbook. It’s written in birdtracks. It’s self-
contained. Every calculation in the book is a pencil-and-paper exercise, with a rare
resort to a pocket calculator. And, of course, it too is unfinished: it is up to you, dear
reader, to complete it. | fear E5 will not yield to pencil and paper.
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Appendix A

Recursive decomposition

This appendix deals with the practicalities of computing projection operator eigen-
values, and is best skipped unless you need to carry out such a calculation.

Let P stand for a projection onto a subspace or the entire space (in which case
P = 1). Assume that the subspace has already been reduced into m irreducible
subspaces and a remainder

P=) P,+P,. (A1)
y=1

Now adjoin a new invariant matrix Q to the set of invariants. By assumption,
Q does not reduce further the v = 1,2,...,m subspaces, i.e., has eigenvalues
AL, A2, oy A

QP, =X\P, (nosum), (A.2)

on the ~th subspace. We construct an invariant, matrix @, restricted to the remaining
(as yet not decomposed) subspace by

Q:=P,QP, =PQP - > \,P,. (A.3)
y=1

As P,. projects onto a finite-dimensional subspace, Q) satisfies a minimal character-
istic equation of order n > 2:

n m-+n
Y aQ = ] (Q-xP,) =0, (A.4)
= a=m-+1

with the corresponding projection operators ( 3.48):

H/\ )\BP a={m+1,....,m+n}. (A.5)

“Minimal” in the above means that we drop repeated roots, so all eigenvalues are
distinct. Q is an awkward object in computations, so we reexpress the projection

operator, in terms of Q, as follows. R
Define first the polynomial, obtained by deleting the (Q — A, 1) factor from (A.4)

n—1

[[@—2s) = Zbkx af=m+1,..m+n, (A.6)
B
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where the expansion coefficient by, = b,(f) depends on the choice of the subspace
o Substituting P, = P — 3", P,, and using the orthogonality of P ,, we obtain
an alternative formula for the projection operators

n—1 m

k k

P, =%, AkE bk{ QF - )\QPV}P, (A.7)
* k=0 y=1

and dimensions

do = tr P, Zbl)\kZbk{trPQ ZAk} (A.8)

@ k=0
The utility of this formula lies in the fact that once the polynomial (A.6) is given, the
only new data it requires are the traces tr(PQ)*, and those are simpler to evaluate
than tr Q.
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Appendix B

Properties of Young projections

H. Elvang and P. Cvitanovi¢

In this appendix we prove the properties of the Young projection operators, stated
in section 9.4.

B.1 UNIQUENESS OF YOUNG PROJECTION OPERATORS

We now show that the Young projection operator Py is well defined by proving
the existence and uniqueness (up to an overall sign) of a nonvanishing connection
between the symmetrizers and antisymmetrizers in Py.

The proof is by induction over the number of columns ¢ in the Young diagram Y
— the principle is illustrated in figure B.1 For ¢ = 1 the Young projection operator
consists of one antisymmetrizer of length s, and s symmetrizers of length 1. Clearly
the connection can only be made in one way, up to an overall sign.

% QEBI % EEBI v HH
Figure B.1 There is a unique (up to an overall sign) connection between the symmetrizers
and the antisymmetrizers, so the Young projection operators are well defined by
the construction procedure explained in the text. The figure shows the principle
of the proof. The dots on the middle Young diagram mark boxes that correspond
to contracted lines.

Assume the result to be valid for Young projection operators derived from Young
diagrams with ¢ — 1 columns. Let Y be a Young diagram with ¢ columns. The
lines from A; in Py must connect to different symmetrizers for the connection
to be nonzero. There are exactly |A 1| symmetrizers in I3, so this can be done in
essentially one way; which line goes to which symmetrizer is only a matter of an
overall sign, and where a line enters a symmetrizer is irrelevant due to (6.8).

After having connected Ay, connecting the symmetry operators in the rest of
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Py is the problem of connecting symmetrizers to antisymmetrizers in the Young
projection operator Py, where Y’ is the Young diagram obtained from Y by slicing
off the first column. Thus, Y’ has k£ — 1 columns, so by the induction hypothesis, the
rest of the symmetry operators in Py can be connected in exactly one nonvanishing
way (up to sign).

By construction, the identity is always present in the expansion. The overall sign
of the Young projection operator is fixed by requiring that upon expansion of the
symmetry operators, the identity has a positive coefficient.

B.2 ORTHOGONALITY

If Y, and Y}, denote standard tableaux derived from the same Young diagram Y,
then Py, Py, = Py, Py, = 0,,P? .» since there is a nontrivial permutation of the
lines connecting the symmetry operators of Y, with those of Y}, and by uniqueness
of the nonzero connection the result is either P%a (ifY, =Yy or0(if Y, #Yy).

Next, consider two different Young diagrams Y and Z with the same number of
boxes. Since at least one column must be bigger in (say) Y than in Z and the p lines
from the corresponding antisymmetrizer must connect to different symmetrizers, it
is not possible to make a nonzero connection between the antisymmetrizers of P v,
to the symmetrizers in Pz, , where subscripts a and b denote any standard tableaux
of Y and Z. Hence Py, Py, = 0, and by a similar argument, Py, Py, = 0.

B.3 NORMALIZATION AND COMPLETENESS

We now derive the formula for the normalization factor ay such that the Young
projection operators are idempotent, P%,a = Pvy,. By the normalization of the
symmetry operators, Young projection operators corresponding to fully symmetrical
or antisymmetrical Young tableaux will be idempotent with oy = 1.

Diagrammatically, P3, is Py, connected to Py, , hence it may be viewed as a
set of outer symmetry operators connected by a set of inner symmetry operators.
Expanding all the inner symmetry operators and using the uniqueness of the nonzero
connection between the symmetrizers and antisymmetrizers of the Young projection
operators, we find that each term in the expansion is either 0 or a copy of P v, . Fora
Young diagram with s rows and ¢ columns there will be a factor of 1/|S;|! (1/]A;!)
from the expansion of each inner (anti)symmetrizer, so we find

Py =}, I Y
N oy,
N ""

j=1
s s t P
Hi:l |Si|! Hj:l |Aj|!
where the sum is over permutations ¢ from the expansion of the inner symmetry
operators. Note that by the uniqueness of the connection between the symmetrizers

=y, Ya o
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and antisymmetrizers, the constant v is independent of which tableau gives rise
to the projection, and consequently the normalization constant oy depends only on
the Young diagram and not the tableau.

For a given k, consider the Young projection operators P v corresponding to all
the k-box Young tableaux. Since the operators Py, are orthogonal and in 1-1 corre-
spondence with the Young tableaux, it follows from the discussion in section 9.3.2
that there are no other operators of k lines orthogonal to this set. Hence the P v ’s
form a complete set, so that

1= Z Py, . (B.1)
Ya

Expanding the projections the identity appears only once, so we have

1
[T— IS:]! H;:1 A" p:

and using this, equation (B.1) states

= K ay/[Y] ) ’ B2
p: ( g II;_ IS:! H;Zl |A; ]! p: (B.2)

since all permutations different from the identity must cancel. When changing the
sum from a sum over the tableaux to a sum over the Young diagrams, we use the
fact that that oy depends only on the diagram and that there are Ay = k!/|Y]
k-standard tableaux for a given diagram. Choosing

T [Sil! TT5 1A
Y] ’
the factor on the right-hand side of (B.2) is 1 by (9.19).
Since the choice of normalization (B.3) gives the completeness relation (B.1), it
follows that it also gives idempotent operators: multiplying by P ;, on both sides of
(B.1) and using orthogonality, we find Pz, = P%b for any Young tableau Zy.

Py, = ay

ay = (83)

B.4 DIMENSION FORMULA

Here we derive the dimension formula (9.28) of the U(n) irreps recursively from
the Young projection operators.

Let Y be astandard tableau and Y’ the Young diagram obtained from Y by removal
of the right-most box in the last row. Note that Y is a standard tableau. Next, draw
the Young projection operator corresponding to Y and Y ’ and note that Py with the
last line traced is proportional to P .

Quite generally, this contraction will look like

AV,

(B.4)
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Using (6.10) and (6.19), we have

1
s t=—|]s1 t+(s—1)s1 t
S
(n—t+1) (s—1)
= 7&% o1 ) =+ po s1 t-1
_(s—l)(t—l) i -
st

_n— t+s

- st s1 t-1
=11 - -

st

Inserting this into (B.4) we see that the first term is proportional to the projection
operator Pv-. The second term vanishes:

Rest of R,

The lines entering S* from the right come from antisymmetrizers in the rest of
the P -diagram. One of these lines, from A, say, must pass from S* through the
lower loop to A* and from A* connect to one of the symmetrizers, say S, in the
rest of the Py-diagram. But due to the construction of the connection between
symmetrizers and antisymmetrizers in a Young projection operator, there is already
a line connecting S, to A, . Hence the diagram vanishes.

The dimensionality formula follows by induction on the number of boxes in the
Young diagrams, with the dimension of a single box Young diagram being n. Let
Y be a Young diagram with p boxes. We assume that the dimensionality formula
is valid for any Young diagram with p — 1 boxes. With P obtained from Py as
above, we have (using the above calculation and writing D~ for the diagrammatic
part of Py):

n—1t+s

dim PY =y tr DY = 71.043( tr DY/ (BS)
St
V'
= (n —t+ S)CYY/ ||Y|| tr DY/ (BG)
Iy fy
=(n—1t+ = B.7

This completes the proof of the dimensionality formula (9.28).
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