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P. Cvitanović, H. Elvang, and A. D. Kennedy

9.1 Two-index tensors 84
9.2 Three-index tensors 85
9.3 Young tableaux 86
9.4 Young projection operators 92
9.5 Reduction of tensor products 96
9.6 U(n) recoupling relations 100
9.7 U(n) 3n-j symbols 101
9.8 SU(n) and the adjoint rep 105
9.9 An application of the negative dimensionality theorem 107
9.10 SU(n) mixed two-index tensors 108
9.11 SU(n) mixed defining⊗ adjoint tensors 109
9.12 SU(n) two-index adjoint tensors 112
9.13 Casimirs for the fully symmetric reps ofSU(n) 117
9.14 SU(n), U(n) equivalence in adjoint rep 118
9.15 Sources 119

Chapter 10. Orthogonal groups 121

10.1 Two-index tensors 122
10.2 Mixed adjoint⊗ defining rep tensors 123
10.3 Two-index adjoint tensors 124
10.4 Three-index tensors 128
10.5 Gravity tensors 130
10.6 SO(n) Dynkin labels 133

Chapter 11. Spinors 135
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Chapter One

Introduction

This monograph offers a derivation of all classical and exceptional semisimple
Lie algebras through a classification of “primitive invariants.” Using somewhat
unconventional notation inspired by the Feynman diagrams of quantum field theory,
the invariant tensors are represented by diagrams; severe limits on what simple
groups could possibly exist are deduced by requiring that irreducible representations
be of integer dimension. The method provides the full Killing-Cartan list of all
possible simple Lie algebras, but fails to prove the existence ofF4, E6, E7 andE8.

One simple quantum field theory question started this project; what is the group-
theoretic factor for the following Quantum Chromodynamicsgluon self-energy di-
agram

= ? (1.1)

I first computed the answer forSU(n). There was a hard way of doing it, using
Gell-Mannfijk anddijk coefficients. There was also an easy way, where one could
doodle oneself to the answer in a few lines. This is the “birdtracks” method that will
be developed here. It works nicely forSO(n) andSp(n) as well. Out of curiosity,
I wanted the answer for the remaining five exceptional groups. This engendered
further thought, and that which I learned can be better understood as the answer to
a different question. Suppose someone came into your office and asked, “On planet
Z, mesons consist of quarks and antiquarks, but baryons contain three quarks in
a symmetric color combination. What is the color group?” Theanswer is neither
trivial nor without some beauty (planetZ quarks can come in 27 colors, and the
color group can beE6).

Once you know how to answer such group-theoretical questions, you can answer
many others. This monograph tells you how. Like the brain, itis divided into two
halves: the plodding half and the interesting half.

The plodding half describes how group-theoretic calculations are carried out for
unitary, orthogonal, and symplectic groups (chapters3–15). Except for the “negative
dimensions” of chapter13and the “spinsters” of chapter14, none of that is new, but
the methods are helpful in carrying out daily chores, such asevaluating Quantum
Chromodynamics group-theoretic weights, evaluating lattice gauge theory group
integrals, computing1/N corrections, evaluating spinor traces, evaluating casimirs,
implementing evaluation algorithms on computers, and so on.

The interesting half, chapters16–21, describes the “exceptional magic” (a new
construction of exceptional Lie algebras), the “negative dimensions” (relations be-
tween bosonic and fermionic dimensions). Open problems, links to literature, soft-
ware and other resources, and personal confessions are relegated to the epilogue,
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monograph’s Web pagebirdtracks.eu. The methods used are applicable to field-
theoretic model building. Regardless of their potential applications, the results are
sufficiently intriguing to justify this entire undertaking. In what follows we shall for-
get about quarks and quantum field theory, and offer instead asomewhat unorthodox
introduction to the theory of Lie algebras. If the style is not Bourbaki [29], it is not
so by accident.

There are two complementary approaches to group theory. In thecanonicalap-
proach one chooses the basis, or the Clebsch-Gordan coefficients, as simply as
possible. This is the method which Killing [189] and Cartan [43] used to obtain the
complete classification of semisimple Lie algebras, and which has been brought to
perfection by Coxeter [67] and Dynkin [105]. There exist many excellent reviews
of applications of Dynkin diagram methods to physics, such as refs. [313, 126].

In thetensorialapproach pursued here, the bases are arbitrary, and every statement
is invariant under change of basis. Tensor calculus deals directly with the invariant
blocks of the theory and gives the explicit forms of the invariants, Clebsch-Gordan
series, evaluation algorithms for group-theoretic weights,etc.

The canonical approach is often impractical for computational purposes, as a
choice of basis requires a specific coordinatization of the representation space. Usu-
ally, nothing that we want to compute depends on such a coordinatization; physical
predictions are pure scalar numbers (“color singlets”), with all tensorial indices
summed over. However, the canonical approach can be very useful in determining
chains of subgroup embeddings. We refer the reader to refs. [313, 126] for such
applications. Here we shall concentrate on tensorial methods, borrowing from Car-
tan and Dynkin only the nomenclature for identifying irreducible representations.
Extensive listings of these are given by McKay and Patera [234] and Slansky [313].

To appreciate the sense in which canonical methods are impractical, let us consider
using them to evaluate the group-theoretic factor associated with diagram (1.1)
for the exceptional groupE8. This would involve summations over 8 structure
constants. The Cartan-Dynkin construction enables us to construct them explicitly;
anE8 structure constant has about2483/6 elements, and the direct evaluation of the
group-theoretic factor for diagram (1.1) is tedious even on a computer. An evaluation
in terms of a canonical basis would be equally tedious forSU(16); however, the
tensorial approach illustrated by the example of section2.2yields the answer for all
SU(n) in a few steps.

Simplicity of such calculations is one motivation for formulating a tensorial ap-
proach to exceptional groups. The other is the desire to understand their geometrical
significance. The Killing-Cartan classification is based ona mapping of Lie alge-
bras onto a Diophantine problem on the Cartan root lattice. This yields an exhaustive
classification of simple Lie algebras, but gives no insight into the associated geome-
tries. In the 19th century, the geometries or the invariant theory were the central
question, and Cartan, in his 1894 thesis, made an attempt to identify the primitive
invariants. Most of the entries in his classification were the classical groupsSU(n),
SO(n), andSp(n). Of the five exceptional algebras, Cartan [44] identifiedG2 as the
group of octonion isomorphisms and noted already in his thesis thatE7 has a skew-
symmetric quadratic and a symmetric quartic invariant. Dickson characterizedE6

as a 27-dimensional group with a cubic invariant. The fact that the orthogonal, uni-

http://birdtracks.eu
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tary and symplectic groups were invariance groups of real, complex, and quaternion
norms suggested that the exceptional groups were associated with octonions, but it
took more than 50 years to establish this connection. The remaining four exceptional
Lie algebras emerged as rather complicated constructions from octonions and Jordan
algebras, known as theFreudenthal-Tits construction.A mathematician’s history of
this subject is given in a delightful review by Freudenthal [130]. The problem has
been taken up by physicists twice, first by Jordan, von Neumann, and Wigner [173],
and then in the 1970s by Gürsey and collaborators [149, 151, 152]. Jordanet al.’s
effort was a failed attempt at formulating a new quantum mechanics that would ex-
plain the neutron, discovered in 1932. However, it gave riseto the Jordan algebras,
which became a mathematics field in itself. Gürseyet al. took up the subject again
in the hope of formulating a quantum mechanics of quark confinement; however,
the main applications so far have been in building models of grand unification.

Although beautiful, the Freudenthal-Tits construction isstill not practical for the
evaluation of group-theoretic weights. The reason is this:the construction involves
[3× 3] octonionic matrices with octonion coefficients, and the 248-dimensional
defining space ofE8 is written as a direct sum of various subspaces. This is conve-
nient for studying subgroup embeddings [292], but awkward for group-theoretical
computations.

The inspiration for the primitive invariants constructioncame from the axiomatic
approach of Springer [315, 316] and Brown [34]: one treats the defining representa-
tion as a single vector space, and characterizes the primitive invariants by algebraic
identities. This approach solves the problem of formulating efficient tensorial al-
gorithms for evaluating group-theoretic weights, and it yields some intuition about
the geometrical significance of the exceptional Lie groups.Such intuition might be
of use to quark-model builders. For example, becauseSU(3) has a cubic invariant
ǫabcqaqbqc, Quantum Chromodynamics, based on this color group, can accommo-
date 3-quark baryons. Are there any other groups that could accommodate 3-quark
singlets? As we shall see,G2, F4, andE6 are some of the groups whose defining
representations possess such invariants.

Beyond its utility as a computational technique, the primitive invariants construc-
tion of exceptional groups yields several unexpected results. First, it generates in a
somewhat magical fashion a triangular array of Lie algebras, depicted in figure1.1.
This is a classification of Lie algebras different from Cartan’s classification; in this
new classification, all exceptional Lie groups appear in thesame series (the bottom
line of figure1.1). The second unexpected result is that many groups and group
representations are mutually related by interchanges of symmetrizations and anti-
symmetrizations and replacement of the dimension parameter n by −n. I call this
phenomenon “negative dimensions.”

For me, the greatest surprise of all is that in spite of all themagic and the strange
diagrammatic notation, the resulting manuscript is in essence not very different from
Wigner’s [347] 1931 classic. Regardless of whether one is doing atomic, nuclear, or
particle physics, all physical predictions (“spectroscopic levels”) are expressed in
terms of Wigner’s3n-j coefficients, which can be evaluated by means of recursive
or combinatorial algorithms.

Parenthetically, this book isnot a book about diagrammatic methods in group
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Figure 1.1 The “Magic Triangle” for Lie algebras. The “MagicSquare” is framed by the
double line. For a discussion, consult chapter21.

theory. If you master a traditional notation that covers alltopics in this book in a
uniform way, more elegantly than birdtracks, more power to you. I would love to
learn it.
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Chapter Two

A preview

The theory of Lie groups presented here had mutated greatly throughout its gen-
esis. It arose from concrete calculations motivated by physical problems; but as
it was written, the generalities were collected into introductory chapters, and the
applications receded later and later into the text.

As a result, the first seven chapters are largely a compilation of definitions and
general results that might appear unmotivated on first reading. The reader is advised
to work through the examples, section2.2and section2.3 in this chapter, jump to
the topic of possible interest (such as the unitary groups, chapter9, or theE8 family,
chapter17), and birdtrack if able or backtrack when necessary.

The goal of these notes is to provide the reader with a set of basic group-theoretic
tools. They are not particularly sophisticated, and they rest on a few simple ideas.
The text is long, because various notational conventions, examples, special cases,
and applications have been laid out in detail, but the basic concepts can be stated in a
few lines. We shall briefly state them in this chapter, together with several illustrative
examples. This preview presumes that the reader has considerable prior exposure
to group theory; if a concept is unfamiliar, the reader is referred to the appropriate
section for a detailed discussion.

2.1 BASIC CONCEPTS

A typical quantum theory is constructed from a few building blocks, which we shall
refer to as thedefining spaceV . They form the defining multiplet of the theory —
for example, the “quark wave functions”qa. The group-theoretical problem consists
of determining the symmetry group,i.e., the group of all linear transformations

q′a = Ga
bqb a, b = 1, 2, . . . , n ,

which leaves invariant the predictions of the theory. The[n×n]matricesG form the
defining representation(or “rep” for short) of the invariance groupG. The conjugate
multipletq (“antiquarks”) transforms as

q′a = Ga
bq

b .

Combinations of quarks and antiquarks transform astensors, such as

p′aq
′
br

′c=Gab
c, d

efpfqer
d ,

Gab
c, d

ef =Ga
fGb

eGd
c

(distinction betweenGa
b andGa

b as well as other notational details are explained
in section3.2). Tensor reps are plagued by a proliferation of indices. These indices
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can either be replaced by a few collective indices:

α =

{
c

ab

}
, β =

{
ef
d

}
,

q′α = Gα
βqβ , (2.1)

or represented diagrammatically:

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

f

��
��
��
��

a
b
c d

G e =
��
��
��

��
��
����
��
��
��
��
��
��
��

��
��
��
��

��
��
��
�� e

��
��
��

��
��
��

c d

fa
b .

(Diagrammatic notation is explained in section4.1.) Collective indices are conve-
nient for stating general theorems; diagrammatic notationspeeds up explicit calcu-
lations.

A polynomial

H(q, r, . . . , s) = h ...c
ab... qarb . . . sc

is an invariant if (and only if) for any transformationG ∈ G and for any set of
vectorsq, r, s, . . . (see section3.4)

H(Gq,Gr, . . .Gs) = H(q, r, . . . , s) . (2.2)

An invariance group is defined by itsprimitive invariants, i.e., by a list of the
elementary “singlets” of the theory. For example, the orthogonal groupO(n) is
defined as the group of all transformations that leaves the length of a vector invariant
(see chapter10). Another example is the colorSU(3) of QCD that leaves invariant
the mesons(qq̄)and the baryons(qqq) (see section15.2). A complete list of primitive
invariantsdefinesthe invariance group via the invariance conditions (2.2); only those
transformations, which respect them, are allowed.

It is not necessary to list explicitly the components of primitive invariant tensors
in order to define them. For example, theO(n) group is defined by the requirement
that it leaves invariant a symmetric and invertible tensorgab = gba, det(g) 6= 0.
Such definition is basis independent, while a component definition g11 = 1, g12 =
0, g22 = 1, . . . relies on a specific basis choice. We shall define all simple Lie groups
in this manner, specifying the primitive invariants only bytheir symmetry and by
the basis-independent algebraic relations that they must satisfy.

These algebraic relations (which I shall callprimitiveness conditions) are hard to
describe without first giving some examples. In their essence they are statements of
irreducibility; for example, if the primitive invariant tensors areδab , habc andhabc,
thenhabch

cbe must be proportional toδea, as otherwise the defining rep would be
reducible. (Reducibility is discussed in section3.5, section3.6, and chapter5.)

The objective of physicists’ group-theoretic calculations is a description of the
spectroscopy of a given theory. This entails identifying the levels (irreducible mul-
tiplets), the degeneracy of a given level (dimension of the multiplet) and the level
splittings (eigenvalues of various casimirs). The basic idea that enables us to carry
this program through is extremely simple: a hermitian matrix can be diagonalized.
This fact has many names: Schur’s lemma, Wigner-Eckart theorem, full reducibility
of unitary reps, and so on (see section3.5 and section5.3). We exploit it by con-
structing invariant hermitian matricesM from the primitive invariant tensors. The
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M ’s have collective indices (2.1) and act on tensors. Being hermitian, they can be
diagonalized

CMC† =




λ1 0 0 . . .
0 λ1 0
0 0 λ1

λ2
...

. . .




,

and their eigenvalues can be used to construct projection operators that reduce mul-
tiparticle states into direct sums of lower-dimensional reps (see section3.5):

Pi =
∏

j 6=i

M − λj1

λi − λj
= C†




. . .
...

. . . 0
. . . 0

...

1 0 . . . 0
0 1
...

. . .
...

0 . . . 1

...

0 . . .
0 . . .
...

. . .




C . (2.3)

An explicit expression for the diagonalizing matrixC (Clebsch-Gordan coefficients
or clebsches,section4.2) is unnecessary — it is in fact often more of an impediment
than an aid, as it obscures the combinatorial nature of group-theoretic computations
(see section4.8).

All that is needed in practice is knowledge of the characteristic equation for the
invariant matrixM (see section3.5). The characteristic equation is usually a simple
consequence of the algebraic relations satisfied by the primitive invariants, and the
eigenvaluesλi are easily determined. Theλi’ s determine the projection operators
Pi, which in turn contain all relevant spectroscopic information: the rep dimension is
given bytrPi, and the casimirs, 6-j’s, crossing matrices, and recoupling coefficients
(see chapter5) are traces of various combinations ofPi’s. All these numbers are
combinatoric; they can often be interpreted as the number of different colorings of
a graph, the number of singlets, and so on.

The invariance group is determined by considering infinitesimal transformations

Ga
b ≃ δab + iǫi(Ti)

b
a .

The generatorsTi are themselves clebsches, elements of the diagonalizing matrix
C for the tensor product of the defining rep and its conjugate. They project out
the adjoint rep and are constrained to satisfy theinvariance conditions(2.2) for
infinitesimal transformations (see section4.4and section4.5):

(Ti)
a′

a h c...
a′b... + (Ti)

b′

b h
c...

ab′... − (Ti)
c
c′h

c′...
ab... + . . .=0

.. ..���
���
���
���

���
���
���
���

b

c

a

��
��
��
�� +

.. ..���
���
���
���

���
���
���
���

b

c

a

��
��
��
�� −

. . ..

��
��
��
��

���
���
���
���

���
���
���
���

b

a

c

+ . . .=0 . (2.4)
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SU(  )n

SO(  )n Sp(  )n

E +...7

Primitive invariants

qqq

qqqq

higher order

qq

Invariance group

Figure 2.1 Additional primitive invariants induce chains of invariance subgroups.

As the corresponding projector operators are already known, we have an explicit
construction of the symmetry group (at least infinitesimally — we will not consider
discrete transformations).

If the primitive invariants are bilinear, the above procedure leads to the familiar
tensor reps of classical groups. However, for trilinear or higher invariants the results
are more surprising. In particular, all exceptional Lie groups emerge in a pattern of
solutions which I will refer to as aMagic Triangle.The flow of the argument (see
chapter16) is schematically indicated in figure2.1, with the arrows pointing to the
primitive invariants that characterize a particular group. For example,E7 primitives
are a sesquilinear invariantqq̄, a skew symmetricqp invariant, and a symmetricqqqq
(see chapter20).

The strategy is to introduce the invariants one by one, and study the way in
which they split up previously irreducible reps. The first invariant might be realiz-
able in many dimensions. When the next invariant is added (section3.6), the group
of invariance transformations of the first invariant splitsinto two subsets; those
transformations that preserve the new invariant, and thosethat do not. Such decom-
positions yield Diophantine conditions on rep dimensions.These conditions are so
constraining that they limit the possibilities to a few thatcan be easily identified.

To summarize: in the primitive invariants approach, all simple Lie groups, clas-
sical as well as exceptional, are constructed by (see chapter 21)

1. defining a symmetry group by specifying a list ofprimitive invariants;

2. usingprimitivenessand invarianceconditions to obtain algebraic relations
between primitive invariants;

3. constructinginvariant matricesacting on tensor product spaces;

4. constructingprojection operatorsfor reduced rep from characteristic equa-
tions for invariant matrices.
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Once the projection operators are known, all interesting spectroscopic numbers can
be evaluated.

The foregoing run through the basic concepts was inevitablyobscure. Perhaps
working through the next two examples will make things clearer. The first example
illustrates computations with classical groups. The second example is more inter-
esting; it is a sketch of construction of irreducible reps ofE6.

2.2 FIRST EXAMPLE: SU(n)

How do we describe the invariance group that preserves the norm of a complex
vector? Thelist of primitivesconsists of a single primitive invariant,

m(p, q) = δab p
bqa =

n∑

a=1

(pa)
∗qa .

The Kroneckerδab is the only primitive invariant tensor. We can immediately write
down the twoinvariant matriceson the tensor product of the defining space and its
conjugate,

identity : 1a c
d,b = δab δ

c
d =

��
��
��

��
��
��

��
��
��

��
��
��

d

a

c

b

trace : T a c
d,b = δadδ

c
b =

c

a b

d
.

The characteristic equationfor T written out in the matrix, tensor, and birdtrack
notations is

T 2=nT

T a f
d,e T

e c
f,b= δadδ

f
e δ

e
fδ

c
b = nT a c

d,b

= ������������ ������������ = n ������������ .

Here we have usedδee = n, the dimension of the defining vector space. The roots
areλ1 = 0, λ2 = n, and the correspondingprojection operatorsare

SU(n) adjoint rep: P1 = T−n1
0−n = 1− 1

nT

������������ =
��
��
��

��
��
��

��
��
��
��

− 1
n ������������

U(n) singlet: P2 = T−0·1
n−0 = 1

nT = 1
n ������������ .

(2.5)

Now we can evaluate any number associated with theSU(n) adjoint rep, such as
its dimension and various casimirs.

Thedimensionsof the two reps are computed by tracing the corresponding pro-
jection operators (see section3.5):

SU(n) adjoint: d1=trP1 =
��
��
��
��

��
��
��
��

= − 1

n
= δbbδ

a
a − 1

n
δbaδ

a
b

=n2 − 1

singlet: d2=trP2 =
1

n
= 1 .
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To evaluatecasimirs, we need to fix the overall normalization of the generatorsTi

of SU(n). Our convention is to take

δij = trTiTj =
��
��
��

��
��
��

���
���
���

���
���
���

.

The value of the quadratic casimir for the defining rep is computed by substituting
the adjoint projection operator:

SU(n) : CF δ
b
a = (TiTi)

b
a= ��

��
��

��
��
��

ba
=

b��
��
��

��
��
��

��
��
��
��

a
− 1

n ��
��
��

��
��
��

a b

=
n2 − 1

n ��
��
��

��
��
��

a b
=

n2 − 1

n
δba . (2.6)

In order to evaluate the quadratic casimir for the adjoint rep, we need to replace the
structure constantsiCijk by theirLie algebradefinition (see section4.5)

TiTj − TjTi= iCijℓTℓ

��
��
��

��
��
��

��
��
��

��
��
��

−
��
��
��

��
��
��

��
��
��

��
��
��

=
��
��
��
��

.

Tracing withTk, we can expressCijk in terms of the defining rep traces:

iCijk =tr(TiTjTk) − tr(TjTiTk)

= ��
��
��

��
��
��

− ��
��
��
�� .

The adjoint quadratic casimirCimnC
nmj is now evaluated by first eliminatingCijk’s

in favor of the defining rep:

δijCA = ��������

i
m

j

n

= 2 ����
����
����
����
����

���
���
���

���
���
���

������ .

The remainingCijk can be unwound by the Lie algebra commutator:

����

��
��
��
��

=
��
��
��
��

− ��
��
��

��
��
��

.

We have already evaluated the quadratic casimir (2.6) in the first term. The second
term we evaluate by substituting the adjoint projection operator

��
��
��

��
��
��

d

j

a

i

b c

= ���
���
���
���

���
���
���
��� − 1

n
��
��
��
��

= − 1

n

tr(TiTkTjTk)=(Ti)
b
a(P1)

a
d,

c
b(Tj)

d
c = (Ti)

a
a(Tj)

c
c −

1

n
(Ti)

b
a(Tj)

a
b .

The(Ti)
a
a(Tj)

c
c term vanishes by the tracelessness ofTi’s. This is a consequence of

the orthonormality of the two projection operatorsP1 andP2 in (2.5) (see (3.50)):

0 = P1P2 = ��
��
��
��

����
����
����
����

��
��
��

��
��
��

⇒ trTi = ������ = 0 .
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Combining the above expressions we finally obtain

CA = 2

(
n2 − 1

n
+

1

n

)
= 2n .

The problem (1.1) that started all this is evaluated the same way. First we relate the
adjoint quartic casimir to the defining casimirs:

=
��
��
��

��
��
��

−
��
��
��

��
��
��

=
��
��
��

��
��
��

−
��
��
��

��
��
��

− …=
����

��
��
��

��
��
��

−
����

��
��
��

��
��
��

− …

=
��
��
��

��
��
��

− ��
��
��

��
��
��

− ��
��
��

��
��
��

+
��
��
��

��
��
��

− …

= n2−1
n

��
��
��

��
��
��

− ��
��
��

��
��
��

���
���
���
���

+ 2
n

���
���
���

���
���
���

+
���
���
���

���
���
���

��
��
��

��
��
��

+ …

and so

on. The result is

SU(n) : = n

{
��
��
��

��
��
��

+
��
��
��
��

}
+2

{
+ +

}
.

The diagram (1.1) is now reexpressed in terms of the defining rep casimirs:

=2n2

{
��
��
��
��

��
��
��
��

+ ��
��
��
��

��
��
��
��

}

+2n

{
+ . . .

}
+ 4

{
+ . . .

}
.

The first two terms are evaluated by inserting the adjoint repprojection operators:

SU(n) : ��
��
��
��

= ���
���
���

���
���
���

− 1

n
��
��
��
��

��
��
��
��

=

(
n2 − 1

n

)2

− 1

n
����
����
����

����
����
����

���
���
���

���
���
��� +

1

n2
��
��
��
��

��
��
��
��

=

(
n2 − 2 +

1

n2
− 1

n

(
n− 1

n

)
+

1

n2

)

=

(
n2 − 3 +

3

n2

)
,

and the remaining terms have alreadybeen evaluated. Collecting everything together,
we finally obtain

SU(n) : = 2n2(n2 + 12) .
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This example was unavoidably lengthy; the main point is thatthe evaluation is
performed by a substitution algorithm and is easily automated. Any graph, no matter
how complicated, is eventually reduced to a polynomial in traces ofδaa = n, i.e.,
the dimension of the defining rep.

2.3 SECOND EXAMPLE: E6 FAMILY

What invariance group preserves norms of complex vectors, as well as a symmetric
cubic invariant,

D(p, q, r) = dabcpaqbrc = D(q, p, r) = D(p, r, q) ?

We analyze this case following the steps of the summary of section 2.1:

i) Primitive invariant tensors

δba = a b , dabc =

a

b c

, dabc = (dabc)
∗ =

a

b c

.

ii) Primitiveness. daefdefb must be proportional toδab , the only primitive 2-index
tensor. We use this to fix the overall normalization ofdabc’s:

= .

iii) Invariant hermitian matrices.We shall construct here the adjoint rep projection
operator on the tensor product space of the defining rep and its conjugate. All
invariant matrices on this space are

δab δ
c
d =

a b

d c
, δadδ

c
b =

c

a b

d
, dacedebd = ���

���
���
���

e
d

a

��
��
��
��

b
��
��
��

��
��
��

c
���
���
���
���

���
���
���

���
���
��� .

They are hermitian in the sense of being invariant under complex conjugation and
transposition of indices (see (3.21)). The crucial step in constructing this basis is the
primitiveness assumption: 4-leg diagrams containing loops are not primitive (see
section3.3).

The adjoint rep is always contained in the decomposition ofV⊗V̄ → V ⊗V̄ into
(ir)reducible reps, so the adjoint projection operator must be expressible in terms of
the 4-index invariant tensors listed above:

(Ti)
a
b (Ti)

d
c =A(δac δ

d
b +Bδab δ

d
c + Cdadedbce)

������������ =A

{
+B ������������ + C ���

���
���
�����

��
��
��

��
��
��

��
��
��

���
���
���
���

������

}
.

iv) Invariance. The cubic invariant tensor satisfies (2.4)

+ + = 0 .
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Contracting withdabc, we obtain

+ 2 = 0 .

Contracting next with(Ti)
b
a, we get an invariance condition on the adjoint projection

operator,

+ 2 = 0 .

Substituting the adjoint projection operator yields the first relation between the
coefficients in its expansion:

0=(n+B + C) + 2

{
+B + C

}

0=B + C +
n+ 2

3
.

v) The projection operatorsshould be orthonormal,PµPσ = Pµδµσ. The adjoint
projection operator is orthogonal to (2.5), the singlet projection operatorP2. This
yields the second relation on the coefficients:

0=P2PA

0=
1

n
������ ������ ������������ = 1 + nB + C .

Finally, the overall normalization factor A is fixed byPAPA = PA:

������ = ��
��
��

��
��
��

���
���
���
��� = A

{
1 + 0− C

2

}
������ .

Combining the above three relations, we obtain the adjoint projection operator for
the invariance group of a symmetric cubic invariant:

������ ������ =
2

9 + n

{
3 + ������������ − (3 + n) ���

���
���
�����

��
��
��

��
��
��

��
��
��

������

���
���
���
���

}
. (2.7)

The correspondingcharacteristic equation, mentioned in the point iv) of the sum-
mary of section2.1, is given in (18.10).

The dimension of the adjoint rep is obtained by tracing the projection operator:

N = δii = =

����
����
����
����

��������

= nA(n+B + C) =
4n(n− 1)

n+ 9
.

This Diophantine conditionis satisfied by a small family of invariance groups,
discussed in chapter18. The most interesting memberof this family is the exceptional
Lie groupE6, with n = 27 andN = 78.

The solution to problem (1.1) requires further computation, but for exceptional
Lie groups the answer, given in table7.4, turns out to be surprisingly simple. The
part of the 4-loop that cannot be simplified by Lie algebra manipulations vanishes
identically for all exceptional Lie groups (see chapter17).
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Chapter Three

Invariants and reducibility

Basic group-theoretic notions are introduced: groups, invariants, tensors, the dia-
grammatic notation for invariant tensors.

The key results are the construction of projection operators from invariant matri-
ces, the Clebsch-Gordan coefficients rep of projection operators (4.18), the invari-
ance conditions (4.35) and the Lie algebra relations (4.47).

The basic idea is simple: a hermitian matrix can be diagonalized. If this matrix
is an invariant matrix, it decomposes the reps of the group into direct sums of
lower-dimensional reps. Most of computations to follow implement the spectral
decomposition

M = λ1P1 + λ2P2 + · · ·+ λrPr ,

which associates with each distinct rootλi of invariant matrixM a projection op-
erator (3.48):

Pi =
∏

j 6=i

M− λj1

λi − λj
.

The exposition given here in sections.3.5–3.6 is taken from refs. [73, 74]. Who
wrote this down first I do not know, but I like Harter’s exposition [155, 156, 157]
best.

What follows is a bit dry, so we start with a motivational quote from Hermann
Weyl on the “so-called first main theorem of invariant theory”:

“All invariants are expressible in terms of a finite number among them. We cannot
claim its validity for every groupG; rather, it will be our chief task to investigate for
each particular group whether a finite integrity basis exists or not; the answer, to be
sure, will turn out affirmative in the most important cases.”

3.1 PRELIMINARIES

In this section we define basic building blocks of the theory to be developed here:
groups, vector spaces, algebras,etc.This material is covered in any introduction
to linear algebra [135, 211, 254] or group theory [325, 153]. Most of the material
reviewed here is probably known to the reader and can be profitably skipped on the
first reading. Nevertheless, it seems that a refresher is needed here, as an expert (more
so than a novice to group theory) tends to find the first exposure to the diagrammatic
rewriting of elementary properties of linear vector spaces(chapter4) hard to digest.
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3.1.1 Groups

Definition. A set of elementsg ∈ G forms a group with respect to multiplication
G × G → G if

(a) the set isclosedwith respect to multiplication; for any two elementsa, b ∈ G,
the productab ∈ G;

(b) multiplication isassociative

(ab)c = a(bc)

for any three elementsa, b, c ∈ G;

(c) there exists anidentityelemente ∈ G such that

eg = ge for anyg ∈ G ;

(d) for anyg ∈ G there exists aninverseg−1 such that

g−1g = gg−1 = e .

If the group is finite, the number of elements is called theorderof the group and
denoted|G|. If the multiplicationab = ba is commutative for alla, b ∈ G, the group
is abelian.

Definition. A subgroupH ⊂ G is a subset ofG that forms a group under multipli-
cation.e is always a subgroup; so isG itself.

3.1.2 Vector spaces

Definition. A setV of elementsx,y, z, . . . is called avector(or linear) spaceover
a fieldF if

(a) vector addition“+” is defined inV such thatV is an abelian group under
addition, with identity element0;

(b) the set isclosedwith respect toscalar multiplicationand vector addition

a(x+ y)=ax+ ay , a, b ∈ F , x,y ∈ V

(a+ b)x=ax+ bx

a(bx)=(ab)x

1x=x , 0x = 0 .

Here the fieldF is eitherR, the field of reals numbers, orC, the field of complex
numbers. Given a subsetV0 ⊂ V , the set of all linear combinations of elements of
V0, or thespanof V0, is also a vector space.

Definition. A basis{e1, · · · , en} is any linearly independent subset ofV whose
span isV. n, the number of basis elements, is called thedimensionof the vector
spaceV.
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In calculations to be undertaken a vectorx ∈ V is often specified by then-tuple
(x1, · · · , xn) in F n, its coordinatesx =

∑
eaxa in a given basis. We will rarely,

if ever, actually fix an explicit basis{e1, · · · , en}, but thinking this way makes it
often easier to manipulate tensorial objects.

Repeated index summation.Throughout this text, the repeatedpairs ofupper/lower
indices are always summed over

Ga
bxb ≡

n∑

b=1

Ga
bxb , (3.1)

unless explicitly stated otherwise.

Let GL(n,F) be the group of general linear transformations,

GL(n,F) = {G : F n → F n | det(G) 6= 0} . (3.2)

UnderGL(n,F) a basis set ofV is mapped into another basis set by multiplication
with a [n×n] matrixG with entries inF,

e′ a = eb(G−1)b
a .

As the vectorx is what it is, regardless of a particular choice of basis, under this
transformation its coordinates must transform as

x′
a = Ga

bxb .

Definition. We shall refer to the set of[n×n] matricesG as astandard repof
GL(n,F), and the space of alln-tuples(x1, x2, . . . , xn)

t, xi ∈ F on which these
matrices act as thestandard representation spaceV .

Under a general linear transformationG ∈ GL(n,F), the row of basis vectors
transforms by right multiplication ase′ = eG−1, and the column ofxa’s trans-
forms by left multiplication asx′ = Gx. Under left multiplication the column
(row transposed) of basis vectorset transforms ase′t = G†et, where thedual rep
G† = (G−1)t is the transpose of the inverse ofG. This observation motivates in-
troduction of adual representation spacēV , the space on whichGL(n,F) acts via
the dual repG†.

Definition. If V is a vector representation space, then thedual spacēV is the set of
all linear forms onV over the fieldF.

If {e1, · · · , en} is a basis ofV , thenV̄ is spanned by thedual basis{f1, · · · , fn},
the set ofn linear formsfa such that

fa(e
b) = δba ,

whereδba is the Kronecker symbol,δba = 1 if a = b, and zero otherwise. The
components of dual representation space vectors will here be distinguished by upper
indices

(y1, y2, . . . , yn) . (3.3)



GroupTheory version 9.0.1, April 8, 2011

INVARIANTS AND REDUCIBILITY 17

They transform underGL(n,F) as

y′a = (G†)b
ayb . (3.4)

ForGL(n,F)no complex conjugation is impliedby the†notation; that interpretation
applies only to unitary subgroups ofGL(n,C). G can be distinguished fromG† by
meticulously keeping track of the relative ordering of the indices,

Gb
a → Ga

b , (G†)ba → Gb
a . (3.5)

3.1.3 Algebra

Definition. A set ofr elementstα of a vector spaceT forms an algebra if, in addition
to the vector addition and scalar multiplication,

(a) the set isclosedwith respect to multiplicationT · T → T , so that for any two
elementstα, tβ ∈ T , the producttα · tβ also belongs toT :

tα · tβ =

r−1∑

γ=0

ταβ
γtγ , ταβ

γ ∈ C ; (3.6)

(b) the multiplication operation isdistributive:

(tα + tβ) · tγ = tα · tγ + tβ · tγ
tα · (tβ + tγ)= tα · tβ + tα · tγ .

The set of numbersταβγ are called thestructure constantsof the algebra. They form
a matrix rep of the algebra,

(tα)β
γ ≡ ταβ

γ , (3.7)

whose dimension is the dimension of the algebra itself.
Depending on what further assumptions one makes on the multiplication, one

obtains different types of algebras. For example, if the multiplication is associative

(tα · tβ) · tγ = tα · (tβ · tγ) ,
the algebra isassociative. Typical examples of products are thematrix product

(tα · tβ)ca = (tα)
b
a(tβ)

c
b , tα ∈ V ⊗ V̄ , (3.8)

and theLie product

(tα · tβ)ca = (tα)
b
a(tβ)

c
b − (tα)

b
c(tβ)

a
b , tα ∈ V ⊗ V̄ . (3.9)

As a plethora of vector spaces, indices and dual spaces loomslarge in our imme-
diate future, it pays to streamline the notation now, by singling out one vector space
as “defining” and indicating the dual vector space by raised indices.

The next two sections introduce the three key notions in our construction of invar-
ince groups:defining rep, section3.2 (see also comments on page23); invariants,
section3.4; andprimitiveness assumption, page21. Chapter4 introduces diagram-
matic notation, the computational tool essential to understanding all computations
to come. As these concepts can be understood only in relationto one another, not
singly, and an exposition of necessity progresses linearly, the reader is asked to be
patient, in the hope that the questions that naturally ariseupon first reading will be
addressed in due course.
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3.2 DEFINING SPACE, TENSORS, REPS

Definition. In what followsV will always denote thedefiningn-dimensional com-
plex vector representation space, that is to say the initial, “elementary multiplet”
space within which we commence our deliberations. Along with the defining vector
representation spaceV comes thedualn-dimensional vector representation space
V̄ . We shall denote the corresponding element ofV̄ by raising the index, as in (3.3),
so the components of defining space vectors, resp. dual vectors, are distinguished
by lower, resp. upper indices:

x=(x1, x2, . . . , xn) , x ∈ V

x̄=(x1, x2, . . . , xn) , x̄ ∈ V̄ . (3.10)

Definition. LetG be a group of transformations acting linearly onV , with the action
of a group elementg ∈ G on a vectorx ∈ V given by an[n×n] matrixG

x′
a = Ga

bxb a, b = 1, 2, . . . , n . (3.11)

We shall refer toGa
b as thedefining repof the groupG. The action ofg ∈ G on a

vectorq̄ ∈ V̄ is given by thedual rep[n×n] matrixG†:

x′a = xb(G†)b
a = Ga

bx
b . (3.12)

In the applications considered here, the groupG will almost always be assumed
to be a subgroup of theunitary group, in which caseG−1 = G†, and† indicates
hermitian conjugation:

(G†)a
b = (Gb

a)∗ = Gb
a . (3.13)

Definition. A tensorx ∈ V p ⊗ V̄ q transforms under the action ofg ∈ G as

x′a1a2...aq

b1...bp
= G

a1a2...aq

b1...bp
, dp...d1

cq...c2c1 x
c1c2...cq
d1...dp

, (3.14)

where theV p ⊗ V̄ q tensor repof g ∈ G is defined by the group acting on all indices
of x.

G
a1a2...ap

b1...bq
, dq...d1

cp...c2c1 ≡ Ga1
c1G

a2
c2 . . .G

ap
cpGbq

dq . . .Gb2
d21Gb1

d1 . (3.15)

Tensors can be combined into other tensors by
(a)addition:

zab...cd...e = αxab...c
d...e + βyab...cd...e , α, β ∈ C , (3.16)

(b) product:

zabcdefg = xabc
e ydfg , (3.17)

(c) contraction:Setting an upper and a lower index equal and summing over all of
its values yields a tensorz ∈ V p−1 ⊗ V̄ q−1 without these indices:

zbc...de...f = xabc...d
e...af , zade = xabc

e ydcb . (3.18)

A tensorx ∈ V p ⊗ V̄ q transforms linearly under the action ofg, so it can be
considered a vector in thed = np+q-dimensional vector spacẽV = V p ⊗ V̄ q. We
can replace the array of its indices by one collective index:

xα = x
a1a2...aq

b1...bp
. (3.19)
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One could be more explicit and give a table like

x1 = x11...1
1...1 , x2 = x21...1

1...1 , . . . , xd = xnn...n
n...n , (3.20)

but that is unnecessary, as we shall use the compact index notation only as a short-
hand.

Definition. Hermitian conjugationis effected by complex conjugation and index
transposition:

(h†)abcde ≡ (hedc
ba )∗ . (3.21)

Complex conjugation interchanges upper and lower indices,as in (3.10); transposi-
tion reverses their order. A matrix ishermitianif its elements satisfy

(M†)ab = Ma
b . (3.22)

For a hermitian matrix there is no need to keep track of the relative ordering of
indices, asM b

a = (M†)b
a = Ma

b.

Definition. The tensor dual toxα defined by (3.19) has form

xα = xbp...b1
aq ...a2a1

. (3.23)

Combined, the above definitions lead to the hermitian conjugation rule for collective
indices: a collective index is raised or lowered by interchanging the upper and lower
indices and reversing their order:

α =

{
a1a2 . . . aq
b1 . . . bp

}
↔ α =

{
bp . . . b1
aq . . . a2a1

}
. (3.24)

This transposition convention will be motivated further bythe diagrammatic rules
of section4.1.

The tensor rep (3.15) can be treated as a[d×d] matrix

Gα
β = G

a1a2...aq

b1...bp
, dp...d1

cq...c2c1 , (3.25)

and the tensor transformation (3.14) takes the usual matrix form

x′
α = Gα

βxβ . (3.26)

3.3 INVARIANTS

Definition. The vectorq ∈ V is aninvariant vectorif for any transformationg ∈ G
q = Gq . (3.27)

Definition. A tensorx ∈ V p ⊗ V̄ q is aninvariant tensorif for any g ∈ G

x
a1a2...ap

b1...bq
= Ga1

c1G
a2

c2 . . . Gb1
d1 . . . Gbq

dqx
c1c2...cp
d1...dq

. (3.28)

We can state this more compactly by using the notation of (3.25)

xα = Gα
βxβ . (3.29)

Here we treat the tensorxa1a2...ap

b1...bq
as a vector in[d×d]-dimensional space,d = np+q.
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If a bilinear formm(x̄, y) = xaMa
byb is invariant for allg ∈ G, the matrix

Ma
b = Ga

cGb
dMc

d (3.30)

is aninvariant matrix. Multiplying with Gb
e and using the unitary condition (3.13),

we find that the invariant matricescommutewith all transformationsg ∈ G:

[G,M] = 0 . (3.31)

If we wish to treat a tensor with equal number of upper and lower indices as a
matrixM : V p ⊗ V̄ q → V p ⊗ V̄ q,

Mα
β = M

a1a2...aq

b1...bp
, dp...d1

cq...c2c1 , (3.32)

then the invariance condition (3.29) will take the commutator form (3.31). Our
convention of separating the two sets of indices by a comma, and reversing the
order of the indices to the right of the comma, is motivated bythe diagrammatic
notation introduced below (see (4.6)).

Definition. We shall refer to an invariant relation betweenp vectors inV andq
vectors inV̄ , which can be written as a homogeneous polynomial in terms ofvector
components, such as

h(x, y, z̄, r̄, s̄) = hab
cdexbyas

erdzc , (3.33)

as aninvariant in V q ⊗ V̄ p (repeated indices, as always, summed over). In this
example, the coefficientshab

cde are components of invariant tensorh ∈ V 3 ⊗ V̄ 2,
obeying the invariance condition (3.28).

Diagrammatic representation of tensors, such as

hab
cde =

a b c d e

h
(3.34)

makes it easier to distinguish different types of invarianttensors. We shall explain
in great detail our conventions for drawing tensors in section 4.1; sketching a few
simple examples should suffice for the time being.

The standard example of a defining vector space is our 3-dimensional Euclidean
space:V = V̄ is the space of all 3-component real vectors(n = 3), and exam-
ples of invariants are the lengthL(x, x) = δijxixj and the volumeV (x, y, z) =
ǫijkxiyjzk. We draw the corresponding invariant tensors as

δij = ji , ǫijk =
kji
. (3.35)

Definition. A composedinvariant tensor can be written as a product and/or contrac-
tion of invariant tensors.

Examples of composed invariant tensors are

δijǫklm =

k mj

i

l

, ǫijmδmnǫnkl =

n

j ki l

m

. (3.36)
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The first example corresponds to a product of the two invariantsL(x, y)V (z, r, s).
The second involves an indexcontraction; we can write this asV (x, y, d

dz )V (z, r, s).
In order to proceed, we need to distinguish the “primitive” invariant tensors from

the infinity of composed invariants. We begin by defining a finite basis for invariant
tensors inV p ⊗ V̄ q:

Definition. A tree invariantcan be represented diagrammatically as a product of
invariant tensors involving no loops of index contractions. We shall denote byT =
{t0, t1 . . . tr−1} a (maximal) set ofr linearly independent tree invariantstα ∈
V p ⊗ V̄ q. As any linear combination oftα can serve as a basis, we clearly have a
great deal of freedom in making informed choices for the basis tensors.

Example:Tensors (3.36) are tree invariants. The tensor

hijkl = ǫimsǫjnmǫkrnǫℓsr =

s
i

j

l

k

m

n
r

, (3.37)

with intermediate indicesm,n, r, s summed over, is not a tree invariant, as it
involves a loop.

Definition. An invariant tensor is called aprimitive invariant tensor if it cannot
be expressed as a linear combination of tree invariants composed from lower-rank
primitive invariant tensors. LetP = {p1,p2, . . .pk} be the set of all primitives.

For example, the Kronecker delta and the Levi-Civita tensor(3.35) are the primi-
tive invariant tensors of our 3-dimensional space. The loopcontraction (3.37) is not
a primitive, because by the Levi-Civita completeness relation (6.28) it reduces to a
sum of tree contractions:

i l

j k

=
j

i

k

l
+

j

i

k

l
= δijδkl + δilδjk , (3.38)

(The Levi-Civita tensor is discussed in section6.3.)

Primitiveness assumption.Any invariant tensorh ∈ V p ⊗ V̄ q can be expressed
as a linear sum over the tree invariantsT ⊂ V q ⊗ V̄ p:

h =
∑

α∈T

hαtα . (3.39)

In contradistinction to arbitrary composite invariant tensors, the number of tree
invariants for a fixed number of external indices is finite. For example, given bilinear
and trilinear primitivesP = {δij , fijk}, any invariant tensorh ∈ V p (here denoted
by a blob) must be expressible as

= A , (p = 2) (3.40)
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= B , (p = 3)

= C +D (p = 4)

+E + F +G
����

����

+H ,

= I + J + · · · , (p = 5) · · · (3.41)

3.3.1 Algebra of invariants

Any invariant tensor of matrix form (3.32)

Mα
β = M

a1a2...aq

b1...bp
, dp...d1

cq...c2c1

that mapsV q⊗ V̄ p → V q⊗ V̄ p can be expanded in the basis (3.39). In this case the
basis tensorstα are themselves matrices inV q ⊗ V̄ p → V q ⊗ V̄ p, and the matrix
product of two basis elements is also an element ofV q ⊗ V̄ p → V q ⊗ V̄ p and can
be expanded in anr element basis:

tαtβ =
∑

t∈T

(τα)β
γtγ . (3.42)

As the number of tree invariants composed from the primitives is finite, under matrix
multiplication the basestα form a finiter-dimensional algebra, with the coefficients
(τα)β

γ giving their multiplication table. As in (3.7), the structure constants(τα)βγ

form a[r×r]-dimensional matrix rep oftα acting on the vector(e, t1, t2, · · · tr−1).
Given a basis, we can evaluate the matriceseβ

γ , (τ1)βγ , (τ2)βγ , · · · (τr−1)β
γ and

their eigenvalues. For at least one of combinations of thesematrices all eigenvalues
will be distinct (or we have failed to choose a good basis). The projection operator
technique of section3.5will enable us to exploit this fact to decompose theV q⊗ V̄ p

space intor irreducible subspaces.
This can be said in another way; the choice of basis{e, t1, t2 · · · tr−1} is arbi-

trary, the only requirement being that the basis elements are linearly independent.
Finding a(τα)βγ with all eigenvalues distinct is all we need to construct an orthog-
onal basis{P0,P1,P2, · · ·Pr−1}, where the basis matricesPi are the projection
operators, to be constructed below in section3.5. For an application of this algebra,
see section9.11.

3.4 INVARIANCE GROUPS

So far we have defined invariant tensors as the tensors invariant under transforma-
tions of a given group. Now we proceed in reverse: given a set of tensors, what is
the group of transformations that leaves them invariant?
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Given a full set of primitives (3.33),P = {p1,p2, . . . ,pk}, meaning thatno other
primitives exist, we wish to determine all possible transformations that preserve this
given set of invariant relations.

Definition. An invariance groupG is the set of all linear transformations (3.28) that
preserve the primitive invariant relations (and, by extension,all invariant relations)

p1(x, ȳ)=p1(Gx, ȳG†)

p2(x, y, z, . . .)=p2(Gx,Gy,Gz . . .) , . . . . (3.43)

Unitarity (3.13) guarantees that all contractions of primitive invariant tensors, and
hence all composed tensorsh ∈ H , are also invariant under action ofG. As we
assume unitaryG, it follows from (3.13) that the list of primitives must always
include the Kronecker delta.

Example 1.If paqa is the only invariant ofG

p′
a
q′a = pb(G†G)b

cqc = paqa , (3.44)

thenG is the fullunitary groupU(n) (invariance group of the complex norm|x|2 =
xbxaδ

a
b ), whose elements satisfy

G†G = 1 . (3.45)

Example 2.If we wish thez-direction to be invariant in our 3-dimensional space,
q = (0, 0, 1) is an invariant vector (3.27), and the invariance group isO(2), the
group of all rotations in thex-y plane.

Which rep is “defining”?

1. The defining spaceV need notcarry the lowest-dimensional rep ofG; it is
merely the space in terms of which we chose to define the primitive invariants.

2. We shall always assume that the Kronecker deltaδba is one of the primitive
invariants,i.e., thatG is a unitary group whose elements satisfy (3.45). This
restriction to unitary transformations is not essential, but it simplifies proofs of
full reducibility. The results, however, apply as well to the finite-dimensional
reps of noncompact groups, such as the Lorentz groupSO(3, 1).
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3.5 PROJECTION OPERATORS

ForM, a hermitian matrix, there exists a diagonalizing unitary matrixC such that

CMC† =




λ1 . . . 0
. . .

0 . . . λ1

0 0

0

λ2 0 . . . 0
0 λ2

...
. . .

...
0 . . . λ2

0

0 0
λ3 . . .
...

.. .




. (3.46)

Hereλi 6= λj are ther distinct roots of the minimal characteristic polynomial
r∏

i=1

(M − λi1) = 0 (3.47)

(the characteristic equations will be discussed in section6.6).
In the matrixC(M − λ21)C

† the eigenvalues corresponding toλ2 are replaced
by zeroes:



λ1 − λ2

λ1 − λ2

λ1 − λ2

0
. . .

0

λ3 − λ2

λ3 − λ2

. . .




,

and so on, so the product over all factors(M−λ21)(M−λ31) . . . , with exception
of the(M − λ11) factor, has nonzero entries only in the subspace associatedwith
λ1:

C
∏

j 6=1

(M − λj1)C
† =

∏

j 6=1

(λ1 − λj)




1 0 0
0 1 0
0 0 1

0

0

0
0

0
. . .




.

In this way, we can associate with each distinct rootλi a projection operatorPi,

Pi =
∏

j 6=i

M− λj1

λi − λj
, (3.48)
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which acts as identity on theith subspace, and zero elsewhere. For example, the
projection operator onto theλ1 subspace is

P1 = C†




1
. . .

1

0
0

. . .
0




C . (3.49)

The matricesPi areorthogonal

PiPj = δijPj , (no sum onj) , (3.50)

and satisfy thecompleteness relation
r∑

i=1

Pi = 1 . (3.51)

As tr(CPiC
†) = trPi, the dimension of theith subspace is given by

di = trPi . (3.52)

It follows from the characteristic equation (3.47) and the form of the projection
operator (3.48) thatλi is the eigenvalue ofM onPi subspace:

MPi = λiPi , (no sum oni) . (3.53)

Hence, any matrix polynomialf(M) takes the scalar valuef(λi)on thePi subspace

f(M)Pi = f(λi)Pi . (3.54)

This, of course, is the reason why one wants to work with irreducible reps: they
reduce matrices and “operators” to pure numbers.

3.6 SPECTRAL DECOMPOSITION

Suppose there exist several linearly independent invariant [d×d] hermitian matrices
M1, M2, . . ., and that we have usedM1 to decompose thed-dimensional vector
spaceṼ = Σ ⊕ Vi. CanM2,M3, . . . be used to further decomposeVi? This
is a standard problem of quantum mechanics (simultaneous observables), and the
answer is that further decomposition is possible if, and only if, the invariant matrices
commute:

[M1,M2] = 0 , (3.55)

or, equivalently, if projection operatorsPj constructed fromM2 commute with
projection operatorsPi constructed fromM1,

PiPj = PjPi . (3.56)
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Usually the simplest choices of independent invariant matrices do not commute.
In that case, the projection operatorsPi constructed fromM1 can be used to project
commuting pieces ofM2:

M
(i)
2 = PiM2Pi , (no sum oni) .

ThatM(i)
2 commutes withM1 follows from the orthogonality ofPi:

[M
(i)
2 ,M1] =

∑

j

λj [M
(i)
2 ,Pj ] = 0 . (3.57)

Now the characteristic equation forM(i)
2 (if nontrivial) can be used to decompose

Vi subspace.
An invariant matrixM induces a decomposition only if its diagonalized form

(3.46) has more than one distinct eigenvalue; otherwise it is proportional to the unit
matrix and commutes trivially with all group elements. A repis said to beirreducible
if all invariant matrices that can be constructed are proportional to the unit matrix.

In particular, the primitiveness relation (3.40) is a statement that the defining rep
is assumedirreducible.

An invariant matrixM commutes with group transformations[G,M] = 0, see
(3.31). Projection operators (3.48) constructed fromM are polynomials inM, so
they also commute with allg ∈ G:

[G,Pi] = 0 (3.58)

(remember thatPi are also invariant[d×d] matrices). Hence, a[d×d] matrix rep
can be written as a direct sum of[di×di] matrix reps:

G = 1G1 =
∑

i,j

PiGPj =
∑

i

PiGPi =
∑

i

Gi . (3.59)

In the diagonalized rep (3.49), the matrixG has a block diagonal form:

CGC† =



G1 0 0
0 G2 0

0 0
. . .


 , G =

∑

i

CiGiCi . (3.60)

The repGi acts only on thedi-dimensional subspaceVi consisting of vectorsPiq,
q ∈ Ṽ . In this way an invariant[d×d] hermitian matrixMwith r distinct eigenvalues
induces a decomposition of ad-dimensional vector spacẽV into a direct sum ofdi-
dimensional vector subspacesVi:

Ṽ
M→ V1 ⊕ V2 ⊕ . . .⊕ Vr . (3.61)

For a discussion of recursive reduction, consult appendixA. The theory of class
algebras [155, 156, 157] offers a more elegant and systematic way of constructing
the maximal set of commuting invariant matricesMi than the sketch offered in this
section.
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Diagrammatic notation

Some aspects of the representation theory of Lie groups are the subject of this mono-
graph. However, it is not written in the conventional tensornotation but instead in
terms of an equivalent diagrammatic notation. We shall refer to this style of carrying
out group-theoretic calculations asbirdtracks(and so do reputable journals [51]).
The advantage of diagrammatic notation will become self-evident, I hope. Two of
the principal benefits are that it eliminates “dummy indices,” and that it does not
force group-theoretic expressions into the 1-dimensionaltensor format (both being
means whereby identical tensor expressions can be made to look totally different).
In contradistinction to some of the existing literature in this manuscript I strive to
keep the diagrammatic notation as simple and elegant as possible.

4.1 BIRDTRACKS

We shall often find it convenient to represent agglomerations of invariant tensors
by birdtracks, a group-theoretical version of Feynman diagrams. Tensors will be
represented byverticesand contractions bypropagators.

Diagrammatic notation has several advantages over the tensor notation. Diagrams
do not require dummy indices, so explicit labeling of such indices is unnecessary.
More to the point, for a human eye it is easier to identify topologically identical dia-
grams than to recognize equivalence between the corresponding tensor expressions.

If readers find birdtrack notation abhorrent, they can surely derive all results of
this monograph in more conventional algebraic notations. To give them a sense of
how that goes, we have covered our tracks by algebra in the derivation of theE7

family, chapter20, where not a single birdtrack is drawn. It it is like speakingItalian
without moving hands, if you are into that kind of thing.

In the birdtrack notation, the Kronecker delta is a propagator:
δab = b a. (4.1)

For areal defining space there is no distinction betweenV andV̄ , or up and down
indices, and the lines do not carry arrows.

Any invariant tensor can be drawn as a generalized vertex:

Xα = Xabc
de = X

d
e
a
b
c

. (4.2)

Whether the vertex is drawn as a box or a circle or a dot is a matter of taste.
The orientation of propagators and vertices in the plane of the drawing is likewise
irrelevant. The only rules are as follows:
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1. Arrows pointaway from the upperindices andtoward the lowerindices; the
line flow is “downward,” from upper to lower indices:

hcd
ab =

b

da

c

. (4.3)

2. Diagrammatic notation must indicate which in (out) arrowcorresponds to
the first upper (lower) index of the tensor (unless the tensoris cyclically
symmetric);

Re
abcd =

a b c d e

index is the first index
Here the leftmost

R . (4.4)

3. The indices are read in thecounterclockwiseorder around the vertex:

Xbce
ad =

b

the indices
Order of reading

a

X

e

d

c

. (4.5)

(The upper and the lower indices are read separately in the counterclockwise
order; their relative ordering does not matter.)

In the examples of this section we index the external lines for the reader’s conve-
nience, but indices can always be omitted. An internal line implies a summation over
corresponding indices, and for external lines the equivalent points on each diagram
represent the same index in all terms of a diagrammatic equation.

Hermitian conjugation (3.21) does two things:

1. It exchanges the upper and the lower indices,i.e., it reverses the directions of
the arrows.

2. It reverses the order of the indices,i.e., it transposes a diagram into its mirror
image. For example,X†, the tensor conjugate to (4.5), is drawn as

Xα = Xed
cba =

d
e
a
b
c

X , (4.6)

and a contraction of tensorsX† andY is drawn as

XαYα = Xbp...b1
aq...a2a1

Y
a1a2...aq

b1...bp
= YX . (4.7)
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In sections.3.1–3.2and here we define the hermitian conjugation and (3.32) matrices
M : V p ⊗ V̄ q → V p ⊗ V̄ q in the multi-index notation

M

... ...

... ...

b1

bp
a1

aq

d1

dp

c1

cq

(4.8)

in such a way that the matrix multiplication

N

...
...

M

...
...

...
...

=

... ...

... ...

MN (4.9)

and the trace of a matrix

... ...

... ...

M (4.10)

can be drawn in the plane. Notation in which all internal lines are maximally crossed
at each multiplication [319] is equally correct, but less pleasing to the eye.

4.2 CLEBSCH-GORDAN COEFFICIENTS

Consider the product



0
0

1
1

1

0
0

0
. . .




C (4.11)

of the two terms in the diagonal representation of a projection operator (3.49). This
matrix has nonzero entries only in thedλ rows of subspaceVλ. We collect them in
a [dλ × d] rectangular matrix(Cλ)

α
σ , α = 1, 2, . . . d, σ = 1, 2, . . . dλ:

Cλ =




(Cλ)
1
1 . . . (Cλ)

d
1

...
...

(Cλ)
d
dλ








︸ ︷︷ ︸
d

dλ . (4.12)

The indexα in (Cλ)
α
σ stands for all tensor indices associated with thed = np+q-

dimensional tensor spaceV p⊗V̄ q. In the birdtrack notation these indices are explicit:

(Cλ)σ,
bp...b1
aq...a2a1

=

b1

aq

λ ... ... . (4.13)
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Such rectangular arrays are calledClebsch-Gordan coefficients(hereafter referred
to asclebschesfor short). They are explicit mappingsV → Vλ. The conjugate
mappingVλ → V̄ is provided by the product

C†




0
0

1
1

1

0
0

0
. . .




, (4.14)

which defines the[d×dλ] rectangular matrix(Cλ)σα,α = 1, 2, . . . d,σ = 1, 2, . . . dλ:

Cλ=




(Cλ)11 . . . (Cλ)dλ

1
...

...
(Cλ)dλ

d








︸ ︷︷ ︸
dλ

d

(Cλ)
a1a2...aq

b1...bp
, σ=

b2

aq

1

σ

b

λ...

..
..

. (4.15)

The two rectangular Clebsch-Gordan matricesCλ andCλ are related by hermitian
conjugation.

The tensors, which we have considered in section3.10, transform as tensor prod-
ucts of the defining rep (3.14). In general, tensors transform as tensor products of
various reps, with indices running over the corresponding rep dimensions:

a1 = 1, 2, . . . , d1

a2 = 1, 2, . . . , d2

xap+1...ap+q
a1a2...ap

where
... (4.16)

ap+q = 1, 2, . . . , dp+q .

The action of the transformationg on the indexak is given by the[dk × dk] matrix
repGk.

Clebsches are notoriously index overpopulated, as they require a rep label and
a tensor index for each rep in the tensor product. Diagrammatic notation alleviates
this index plague in either of two ways:

1. One can indicate a rep label on each line:

Caµaν
aλ

, aσ = aµ

aλ

aν

aσ

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

ν

µ
λ

σ
. (4.17)



GroupTheory version 9.0.1, April 8, 2011

DIAGRAMMATIC NOTATION 31

(An index, if written, is written at the end of a line; a rep label is written above
the line.)

2. One can draw the propagators (Kronecker deltas) for different reps with dif-
ferent kinds of lines. For example, we shall usually draw theadjoint rep with
a thin line.

By the definition of clebsches (3.49), theλ rep projection operator can be written
out in terms of Clebsch-Gordan matricesCλCλ:

CλCλ=Pλ , (no sum oni)

(Cλ)
a1a2...ap

b1...bq
, α (Cλ)α,

dq...d1

cp...c2c1 =(Pλ)
a1a2...dp

b1...bq
, dq...d1

cp...c2c1 (4.18)

λ

... ... = λ...

...

P .

A specific choice of clebsches is quite arbitrary. All relevant properties of projec-
tion operators (orthogonality, completeness, dimensionality) are independent of the
explicit form of the diagonalization transformationC. Any set ofCλ is acceptable
as long as it satisfies the orthogonality and completeness conditions. From (4.11)
and (4.14) it follows thatCλ areorthonormal:

CλC
µ=δµλ1 ,

(Cλ)β ,
a1a2...ap

b1...bq
(Cµ) bq...b1

ap...a2a1
, α=δαβ δ

µ
λ

λ µ

... =
µλ
. (4.19)

Here1 is the[dλ × dλ] unit matrix, andCλ’s are multiplied as[dλ × d] rectangular
matrices.

Thecompleteness relation(3.51)

∑

λ

CλCλ=1 , ([d× d] unit matrix) ,

∑

λ

(Cλ)
a1a2...ap

b1...bq
, α(Cλ)α,

dq...d1

cp...c2c1 = δa1

c1 δ
a2

c2 . . . δ
dq

bq

∑

λ

λ

... ... = ... (4.20)

CλPµ= δµλC
λ ,

PλC
µ= δµλC

µ , (no sum onλ, µ) , (4.21)

follows immediately from (3.50) and (4.19).
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4.3 ZERO- AND ONE-DIMENSIONAL SUBSPACES

If a projection operator projects onto a zero-dimensional subspace, it must vanish
identically:

dλ = 0 ⇒ Pλ =
λ

... ... = 0 . (4.22)

This follows from (3.49); dλ is the number of 1’s on the diagonal on the right-hand
side. Fordλ = 0 the right-hand side vanishes. The general form ofPλ is

Pλ =

r∑

k=1

ckMk , (4.23)

whereMk are the invariant matrices used in construction of the projector operators,
and ck are numerical coefficients. Vanishing ofPλ therefore implies a relation
among invariant matricesMk.

If a projection operator projects onto a 1-dimensional subspace, its expression, in
terms of the clebsches (4.18), involves no summation, so we can omit the interme-
diate line

dλ = 1 ⇒ Pλ = ...

... = (Cλ)
a1a2...ap

b1...bq
(Cλ)

dq...d1

cp...c2c1 .

(4.24)
For any subgroup ofSU(n), the reps are unitary, with unit determinant. On the
1-dimensional spaces, the group acts trivially,G = 1. Hence, ifdλ = 1, the clebsch
Cλ in (4.24) is an invariant tensor inV p⊗V̄ q.

4.4 INFINITESIMAL TRANSFORMATIONS

A unitary transformationG infinitesimally close to unity can be written as

Ga
b = δba + iDb

a , (4.25)

whereD is a hermitian matrix with small elements,|Db
a| ≪ 1. The action ofg ∈ G

on the conjugate space is given by

(G†)b
a = Ga

b = δab − iDa
b . (4.26)

D can be parametrized byN ≤ n2 real parameters.N , the maximal number of
independent parameters, is called thedimensionof the group (also the dimension of
the Lie algebra, or the dimension of the adjoint rep).

In this monograph we shall consider only infinitesimal transformations of form
G = 1+iD, |Da

b | ≪ 1. We do not study the entire group of invariances, but only the
transformations (3.11) connected to the identity. For example, we shall not consider
invariances under coordinate reflections.

The generators of infinitesimal transformations (4.25) are hermitian matrices and
belong to theDa

b ∈ V ⊗ V̄ space. However, not any element ofV ⊗ V̄ generates
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an allowed transformation; indeed, one of the main objectives of group theory is to
define the class of allowed transformations.

In section3.5we have described the decomposition of a tensor space into (ir)re-
ducible subspaces. As a particular case, consider the decomposition ofV ⊗V̄ . The
corresponding projection operators satisfy the completeness relation (4.20):

1=
1

n
T +PA +

∑

λ6=A

Pλ

δadδ
c
b =

1

n
δab δ

c
d + (PA)

a
b ,

c
d +

∑

λ6=A

(Pλ)
a
b ,

c
d

=
1

n
+ +

∑

λ

λ
. (4.27)

If δµλ is the only primitive invariant tensor, thenV ⊗ V̄ decomposes into two sub-
spaces, and there are no other irreducible reps. However, ifthere are further primitive
invariant tensors,V⊗V̄ decomposes into more irreducible reps, indicated by the sum
overλ. Examples will abound in what follows. The singlet projection operatorT/n
always figures in this expansion, asδab ,

c
d is always one of the invariant matrices (see

the example worked out in section2.2). Furthermore, the infinitesimal generators
Da

b must belong to at least one of the irreducible subspaces ofV ⊗V̄ .
This subspace is called theadjointspace, and its special role warrants introduction

of special notation. We shall refer to this vector space by letterA, in distinction to
the defining spaceV of (3.10). We shall denote its dimension byN , label its tensor
indices byi, j, k . . ., denote the corresponding Kronecker delta by a thin, straight
line,

δij = i j , i, j = 1, 2, . . . , N , (4.28)

and the corresponding clebsches by

(CA)i,
a
b =

1√
a
(Ti)

a
b =

b
i

a
a, b=1, 2, . . . , n

i=1, 2, . . . , N .

MatricesTi are called thegeneratorsof infinitesimal transformations. Herea is an
(uninteresting) overall normalization fixed by the orthogonality condition (4.19):

(Ti)
a
b (Tj)

b
a=tr(TiTj) = a δij

=a . (4.29)

The scale ofTi is not set, as any overall rescaling can be absorbed into the normaliza-
tiona. For our purposes it will be most convenient to usea = 1 as the normalization
convention. Other normalizations are commonplace. For example,SU(2)Pauli ma-
tricesTi =

1
2σi andSU(n) Gell-Mann [137] matricesTi =

1
2λi are conventionally

normalized by fixinga = 1/2:

tr(TiTj) =
1

2
δij . (4.30)
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The projector relation (4.18) expresses the adjoint rep projection operators in terms
of the generators:

(PA)
a
b ,

c
d =

1

a
(Ti)

a
b (Ti)

c
d =

1

a
. (4.31)

Clearly, the adjoint subspace is always included in the sum (4.27) (there must
exist some allowed infinitesimal generatorsDb

a, or otherwise there is no group to
describe), but how do we determine the corresponding projection operator?

The adjoint projection operator is singled out by the requirement that the group
transformations do not affect the invariant quantities. (Remember, the group isde-
finedas the totality of all transformations that leave the invariants invariant.) For
every invariant tensorq, the infinitesimal transformationsG = 1 + iD must sat-
isfy the invariance condition (3.27). ParametrizingD as a projection of an arbitrary
hermitian matrixH ∈ V ⊗V̄ into the adjoint space,D = PAH ∈ V ⊗V̄ ,

Da
b =

1

a
(Ti)

a
b ǫi , ǫi =

1

a
tr(TiH) , (4.32)

we obtain theinvariance condition, which thegeneratorsmust satisfy: theyannihi-
late invariant tensors:

Tiq = 0 . (4.33)

To state the invariance condition for an arbitrary invariant tensor, we need to
define the generators in the tensor reps. By substitutingG = 1 + iǫ · T + O(ǫ2)
into (3.15) and keeping only the terms linear inǫ, we find that the generators of
infinitesimal transformations for tensor reps act by touching one index at a time:

(Ti)
a1a2...ap

b1...bq
, dq...d1

cp...c2c1 = (Ti)
a1

c1 δ
a2

c2 . . . δap
cp δ

d1

b1
. . . δ

dq

bq

+δa1

c1 (Ti)
a2

c2 . . . δ
ap
cp δ

d1

b1
. . . δ

dq

bq
+ . . .+ δa1

c1 δ
a2

c2 . . . (Ti)
ap
cp δ

d1

b1
. . . δ

dq

bq

− δa1

c1 δ
a2

c2 . . . δap
cp (Ti)

d1

b1
. . . δ

dq

bq
− . . .− δa1

c1 δ
a2

c2 . . . δap
cp δ

d1

b1
. . . (Ti)

dq

bq
. (4.34)

This forest of indices vanishes in the birdtrack notation, enabling us to visualize the
formula for the generators of infinitesimal transformations for any tensor represen-
tation:
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with a relative minus sign between lines flowing in opposite directions. The reader
will recognize this as the Leibnitz rule.

Tensor reps of the generators decompose in the same way as thegroup reps (3.60):

Ti=
∑

λ

CλT
(λ)
i Cλ
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The invariance conditions take a particularly suggestive form in the diagrammatic
notation. Equation (4.33) amounts to the insertion of a generator into all external
legs of the diagram corresponding to the invariant tensorq:

0 = + −

+ − . (4.36)

The insertions on the lines going into the diagram carry a minus sign relative to the
insertions on the outgoing lines.

Clebsches are themselves invariant tensors. Multiplying both sides of (3.60) with
Cλ and using orthogonality (4.19), we obtain

CλG = GλCλ , (no sum onλ) . (4.37)

The Clebsch-Gordan matrixCλ is a rectangular[dλ × d] matrix, henceg ∈ G acts
on it with a[dλ × dλ] rep from the left, and a[d× d] rep from the right. (3.48) is the
statement of invariance for rectangular matrices, analogous to (3.30), the statement
of invariance for square matrices:

Cλ=G†
λCλG ,

Cλ=G†CλGλ . (4.38)

The invariance condition for the clebsches is a special caseof (4.36), the invariance
condition for any invariant tensor:

0=−T
(λ)
i Cλ + CλTi
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The orthogonality condition (4.19) now yields the generators inλ rep in terms of
the defining rep generators:
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The reality of the adjoint rep. For hermitian generators, the adjoint rep is real, and
the upper and lower indices need not be distinguished; the “propagator” needs no
arrow. For nonhermitian choices of generators, the adjointrep is complex (“gluon”
lines carry arrows), butA andĀ are equivalent, as indices can be raised and lowered
by the Cartan-Killing form,

gij = tr(T †
i Tj) . (4.41)

The Cartan canonical basisD = ǫiHi + ǫαEα + ǫ∗αE−α is an example of a
nonhermitian choice. Here we shall always assume thatTi are chosen hermitian.

4.5 LIE ALGEBRA

As the simplest example of computation of the generators of infinitesimal transfor-
mations acting on spaces other than the defining space, consider the adjoint rep.
Using (4.40) on theV⊗V̄ → A adjoint rep clebsches (i.e., generatorsTi), we obtain

= − (4.42)

(Ti)jk = (Ti)
c
a(Tk)

b
c(Tj)

a
b − (Ti)

c
a(Tj)

b
c(Tk)

a
b .

Our convention is always to assume that the generatorsTi have been chosen
hermitian. That means thatǫi in the expansion (4.32) is real;A is a real vector
space, there is no distinction between upper and lower indices, and there is no need
for arrows on the adjoint rep lines (4.28). However, the arrow on the adjoint rep
generator (4.42) is necessary to define correctly the overall sign. If we interchange
the two legs, the right-hand side changes sign:

��
��
��
�� = −

��
��
��
�� , (4.43)

(the generators for real reps are always antisymmetric). This arrow has no absolute
meaning; its direction isdefinedby (4.42). Actually, as the right-hand side of (4.42)
is antisymmetric under interchange of any two legs, it is convenient to replace the
arrow in the vertex by a more symmetric symbol, such as a dot:
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(Ti)jk ≡ −iCijk = − tr[Ti, Tj ]Tk , (4.44)

and replace the adjoint rep generators(Ti)jk by the fully antisymmetric structure
constantsiCijk. The factori ensures their reality (in the case of hermitian generators
Ti), and we keep track of the overall signs by always reading indicescounterclock-
wisearound a vertex:

− iCijk =

kj

i

(4.45)

= − ���� . (4.46)

As all other clebsches, the generators must satisfy the invariance conditions (4.39):

0 = − + − .

Redrawing this a little and replacing the adjoint rep generators (4.44) by the structure
constants, we find that the generators obey theLie algebracommutation relation

i j

− =

TiTj − TjTi= iCijkTk . (4.47)

In other words, the Lie algebra is simply a statement thatTi, the generators of in-
variance transformations, are themselves invariant tensors. The invariance condition
for structure constantsCijk is likewise

0 = + + .

Rewriting this with the dot-vertex (4.44), we obtain

− = . (4.48)

This is the Lie algebra commutator for the adjoint rep generators, known as the
Jacobi relationfor the structure constants

CijmCmkl − CljmCmki = CimlCjkm . (4.49)

Hence, the Jacobi relation is also an invariance statement,this time the statement
that the structure constants are invariant tensors.

Sign convention forCijk. A word of caution about using (4.47): vertexCijk is
an oriented vertex. If the arrows are reversed (matricesTi, Tj multiplied in reverse
order), the right-hand side acquires an overall minus sign.
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4.6 OTHER FORMS OF LIE ALGEBRA COMMUTATORS

In our calculations we shall never need explicit generators; we shall instead use the
projection operators for the adjoint rep. For repλ they have the form

(PA)
a
b ,

β
α =

β
������ ���� ����

λb

a α
a, b=1, 2, . . . , n

α, β=1, . . . , dλ . (4.50)

The invariance condition (4.36) for a projection operator is
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Contracting with(Ti)
a
b and defining[dλ × dλ] matrices(T a

b )
β
α ≡ (PA)

a
b ,

β
α, we

obtain
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b , T

c
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This is a common way of stating the Lie algebra conditions forthe generators in an
arbitrary repλ. For example, forU(n) the adjoint projectionoperator is simply a unit
matrix (any hermitian matrix is a generator of unitary transformation;cf.chapter9),
and the right-hand side of (4.52) is given by

U(n), SU(n) : [T a
b , T

c
d ] = δcbT

a
d − T c

b δ
a
d . (4.53)

For the orthogonal groups the generators of rotations are antisymmetric matrices,
and the adjoint projection operator antisymmetrizes generator indices:

SO(n) : [Tab, Tcd] =
1

2

{
gacTbd − gadTbc

−gbcTad + gbdTac

}
. (4.54)

Apart from the normalization convention, these are the familiar Lorentz group com-
mutation relations (we shall return to this in chapter10).

4.7 CLASSIFICATION OF LIE ALGEBRAS BY THEIR PRIMITIVE

INVARIANTS

There is a natural hierarchy to invariance groups, hinted atin sections.2.1–3.6,
that can perhaps already be grasped at this stage. Suppose wehave constructed the
invariance groupG1, which preserves primitives (3.39). Adding a new primitive, let
us say a quartic invariant, means that we have imposed a new constraint; only those
transformations ofG1 that also preserve the additional primitive constituteG2, the
invariance group of , , . Hence,G2 ⊆ G1 is a subgroup ofG1. Suppose
now that you think that the primitiveness assumption is too strong, and that some



GroupTheory version 9.0.1, April 8, 2011

DIAGRAMMATIC NOTATION 39

quartic invariant, let us say (3.37), cannotbe reduced to a sum of tree invariants
(3.41), i.e., it is of form

= + (rest of (3.41)) ,

where is a new primitive, not included in the original list of primitives. By the
above argument only a subgroupG3of transformations inG2preserve the additional
invariant,G3 ⊆ G2. If G3 does not exist (the invariant relations are so stringent that
there remain no transformations that would leave them invariant), the maximal set
of primitives has been identified.

4.8 IRRELEVANCY OF CLEBSCHES

As was emphasized in section4.2, an explicit choice of clebsches is highly arbitrary;
it corresponds to a particular coordinatization of thedλ-dimensional subspaceVλ.
For computationalpurposes clebsches are largely irrelevant. Nothing that a physicist
wants to compute depends on an explicit coordinatization. For example, in QCD the
physically interesting objects are color singlets, and allcolor indices are summed
over: one needs only an expression for the projection operators (4.31), not for the
Cλ’s separately.

Again, a nice example is the Lie algebra generatorsTi. Explicit matrices are often
constructed (Gell-Mannλi matrices, Cartan’s canonical weights); however, in any
singlet they always appear summed over the adjoint rep indices, as in (4.31). The
summed combination of clebsches is just the adjoint rep projection operator, a very
simple object compared with explicitTi matrices (PA is typically a combination
of a few Kronecker deltas), and much simpler to use in explicit evaluations. As we
shall show by many examples, all rep dimensions, casimirs,etc.. are computable
once the projection operators for the reps involved are known. Explicit clebsches
are superfluous from the computational point of view; we use them chiefly to state
general theorems without recourse to any explicit realizations.

However, if one has to compute noninvariant quantities, such as subgroup embed-
dings, explicit clebsches might be very useful. Gell-Mann [137] inventedλi matrices
in order to embedSU(2)of isospin intoSU(3)of the eightfold way. Cartan’s canon-
ical form for generators, summarized by Dynkin labels of a rep (table7.6) is a very
powerful tool in the study of symmetry-breaking chains [313, 126]. The same can
be achieved with decomposition by invariant matrices (a nonvanishing expectation
value for a direction in the defining space defines the little group of transformations
in the remaining directions), but the tensorial technologyin this context is underde-
veloped compared to the canonical methods. And, as Stedman [318] rightly points
out, if you need to check your calculations against the existing literature, keeping
track of phase conventions is a necessity.
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4.9 A BRIEF HISTORY OF BIRDTRACKS

Ich wollte nicht eine abstracte Logik in Formeln darstellen,
sondern einen Inhalt durch geschriebene Zeichen in
genauerer und übersichtlicherer Weise zum Ausdruck brin-
gen, als es durch Worte möglich ist.

— Gottlob Frege

In this monograph, conventional subjects — symmetric group, Lie algebras (and, to a
lesser extent, continuousLie groups)— are presented in a somewhat unconventional
way, in a flavor of diagrammatic notation that I refer to as “birdtracks.” Similar
diagrammatic notations have been invented many times before, and continue to be
invented within new research areas. The earliest publishedexample of diagrammatic
notation as a language of computation, not a mere mnemonic device, appears to
be F.L.G. Frege’s 1879Begriffsschrift[127], at its time a revolution that laid the
foundation of modern logic. The idiosyncratic symbolism was not well received,
ridiculed as “incorporating ideas from Japanese.” Ruined by costs of typesetting,
Frege died a bitter man, preoccupied by a deep hatred of the French, of Catholics,
and of Jews.

According to Abdesselam and Chipalkatti [4], another precursor of diagrammatic
methods was the invariant theory discrete combinatorial structures introduced by
Cayley [50], Sylvester [322], and Clifford [61, 183], reintroduced in a modern,
diagrammatic notation by Olver and Shakiban [265, 266].

In his 1841 fundamental paper [167] on the determinants today known as “Jaco-
bians,” Jacobi initiated the theory of irreps of the symmetric groupSk. Schur used
theSk irreps to develop the representation theory ofGL(n;C) in his 1901 disser-
tation [307], and already by 1903 the Young tableaux [358, 339] (discussed here in
chapter9) came into use as a powerful tool for reduction of bothSk andGL(n;C)
representations. In quantum theory the group of choice [344] is the unitary group
U(n), rather than the general linear groupGL(n;C). Today this theory forms the
core of the representation theory of both discrete and continuous groups, described
in many excellent textbooks [238, 64, 350, 138, 26, 11, 317, 132, 133, 228]. Permu-
tations and their compositions lend themselves naturally to diagrammatic represen-
tation developed here in chapter6. In his extension of theGL(n;C) Schur theory
to representations ofSO(n), R. Brauer [31] introduced diagrammatic notation for
δij in order to represent “Brauer algebra” permutations, indexcontractions, and
matrix multiplication diagrammatically, in the form developed here in chapter10.
His equation (39)

(send index 1 to 2, 2 to 4, contract ingoing (3 · 4), outgoing (1 · 3)) is the earliest
published proto-birdtrack I know about.

R. Penrose’s papers are the first (known to me) to cast the Young projection
operators into a diagrammatic form. In this monograph I use Penrose diagrammatic
notation for symmetrization operators [281], Levi-Civita tensors [283], and “strand
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networks” [282]. For several specific, few-index tensor examples, diagrammatic
Young projection operators were constructed by Canning [41], Mandula [227], and
Stedman [319].

It is quite likely that since Sophus Lie’s days many have doodled birdtracks
in private without publishing them, partially out of a senseof gravitas and in no
insignificant part because preparing these doodles for publications is even today a
painful thing. I have seen unpublished 1960s course notes ofJ. G. Belinfante [6, 19],
very much like the birdtracks drawn here in chapters6–9, and there are surely many
other such doodles lost in the mists of time. But, citing Frege [128], “the comfort
of the typesetter is certainly not thesummum bonum,” and now that the typesetter
is gone, it is perhaps time to move on.

The methods used here come down to us along two distinct lineages, one that can
be traced to Wigner, and the other to Feynman.

Wigner’s 1930s theory, elegantly presented in his group theory monograph [347],
is still the best book on what physics is to be extracted from symmetries, be it
atomic, nuclear, statistical, many-body, or particle physics: all physical predictions
(“spectroscopic levels”) are expressed in terms of Wigner’s3n-j coefficients, which
can be evaluated by means of recursive or combinatorial algorithms. As explained
here in chapter5, decomposition (5.8) of tensor products into irreducible reps implies
that any invariant number characterizing a physical systemwith a given symmetry
corresponds to one or several “vacuum bubbles,” trivalent graphs (a graph in which
every vertex joins three links) with no external legs, such as those listed in table5.1.

Since the 1930s much of the group-theoretical work on atomicand nuclear
physics had focused on explicit construction of clebsches for the rotation group
SO(3) ≃ SU(2). The first paper recasting Wigner’s theory in graphical formap-
pears to be a 1956 paper by I. B. Levinson [213], further developed in the influental
1960 monograph by A. P. Yutsis (later A. Jucys), I. Levinson and V. Vanagas [359],
published in English in 1962 (see also refs. [109, 33]). A recent contribution to this
tradition is the book by G. E. Stedman [319], which covers a broad range of appli-
cations, including the methods introduced in the 1984 version of the present mono-
graph [82]. The pedagogical work of computer graphics pioneer J. F. Blinn [25],
who was inspired by Stedman’s book, also deserves mention.

The main drawback of such diagrammatic notations is lack of standardization,
especially in the case of clebsches. In addition, the diagrammatic notations designed
for atomic and nuclear spectroscopy are complicated by various phase conventions.

R. P. Feynman went public with Feynman diagrams on my second birthday, April
1, 1948, at the Pocono Conference. The idiosyncratic symbolism (Gleick [141]
describes it as “chicken-wire diagrams”) was not well received by Bohr, Dirac,
and Teller, leaving Feynman a despondent man [141, 308, 237]. The first Feynman
diagram appeared in print in Dyson’s article [106, 309] on the equivalence of (at
that time) the still unpublished Feynman theory and the theories of Schwinger and
Tomonaga.

If diagrammatic notation is to succeed, it need be not only precise, but also beau-
tiful. It is in this sense that this monographbelongs to the tradition of R. P. Feynman,
whose sketches of the very first “Feynmandiagrams” inhis fundamental 1949Q.E.D.
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paper [119, 309] are beautiful to behold. Similarly, R. Penrose’s [281, 282] way of
drawing symmetrizers and antisymmetrizers, adopted here in chapter6, is imbued
with a very Penrose aesthetics, and even though the print is black and white, one
senses that he had drawn them in color.

In developing the “birdtrack” notation in 1975 I was inspired by Feynman di-
agrams and by the elegance of Penrose’s binors [281]. I liked G. ’t Hooft’s 1974
double-line notation forU(n) gluon group-theory weights [163], and have intro-
duced analogous notation forSU(n), SO(n) andSp(n) in my 1976 paper [73]. In
an influential paper, M. Creutz [69] has applied such notation to the evaluation of
SU(n) lattice gauge integrals (described here in chapter8). The challenge was to de-
velop diagrammatic notation for the exceptional Lie algebras, and I succeeded [73],
except forE8, which came later.

In the quantum groups literature, graphs composed of vertices (4.44) are called
trivalent. The Jacobi relation (4.48) in diagrammatic form was first published [73]
in 1976; though it seems surprising, I have not found it in theearlier literature. This
set of diagrams has since been given the moniker “IHX” by D. Bar-Natan [14].
In his Ph.D. thesis Bar-Natan has also renamed the Lie algebra commutator (4.47)
the “STU relation,” by analogy to Mandelstam’s scattering cross-channel variables
(s, t, u), and the full antisymmetry of structure constants (4.46) the “AS relation.”

So why call this “birdtracks” and not “Feynman diagrams”? The difference is
that here diagrams are not a mnemonic device, an aid in writing down an integral
that is to be evaluated by other techniques. In our applications, explicit construc-
tion of clebsches would be superfluous, and we need no phase conventions. Here
“birdtracks” are everything—unlike Feynman diagrams, here all calculations are
carried out in terms of birdtracks, from start to finish. Leftbehind are blackboards
and pages of squiggles of the kind that madeBernice Durand exclaim: “What are
these birdtracks!?” and thus give them the name.

http://theory1.hep.wisc.edu/~bdurand/
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Chapter Five

Recouplings

Clebsches discussed in section4.2project a tensor inV p ⊗ V̄ q onto a subspaceλ.
In practice one usually reduces a tensor step by step, decomposing a 2-particle state
at each step. While there is some arbitrariness in the order in which these reductions
are carried out, the final result is invariant and highly elegant: any group-theoretical
invariant quantity can be expressed in terms of Wigner 3- and6-j coefficients.

5.1 COUPLINGS AND RECOUPLINGS

We denote the clebsches forµ⊗ ν → λ by
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µ

ν

. (5.1)

Hereλ, µ, ν are rep labels, and the corresponding tensor indices are suppressed.
Furthermore, ifµ andν are irreducible reps, the same clebsches can be used to
projectµ⊗ λ̄ → ν̄

Pν =
dν
dλ
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, (5.2)

andν ⊗ λ̄ → µ̄

Pµ =
dµ
dλ
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ν . (5.3)

Here the normalization factors come fromP 2 = P condition. In order to draw the
projection operators in a more symmetric way, we replace clebsches by 3-vertices:
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. (5.4)

In this definition one has to keep track of the ordering of the lines around the vertex.
If in some context the birdtracks look better with two legs interchanged, one can
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use Yutsis’s notation [359]:

��
��
��

��
��
��

���
���
���
���

−
���
���
���
���

ν

µ
λ ≡

��
��
��
�� ����

����
����

����
����
����

����
����
����

����
����
����

µ

ν

λ
. (5.5)

While all sensible clebsches are normalized by the orthonormality relation (4.19),
in practice no two authors ever use the same normalization for 3-vertices (in other
guises known as 3-j coefficients, Gell-Mannλ matrices, Cartan roots, Diracγ
matrices,etc.). For this reason we shall usually not fix the normalization

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

µ

ν

σλ
= aλ ��
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dλ
, (5.6)

leaving the reader the option of substituting his or her favorite choice (such asa = 1
2

if the 3-vertex stands for Gell-Mann12λi, etc.).
To streamline the discussion, we shall drop the arrows and most of the rep labels

in the remainder of this chapter — they can always easily be reinstated.
The above three projection operators now take a more symmetric form:

Pλ=
1

aλ

λ
µ

ν

Pµ=
1

aµ

µ
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ν

Pν =
1

aν µ

ν
λ
. (5.7)

In terms of 3-vertices, the completeness relation (4.20) is
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=
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dλ
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. (5.8)

Any tensor can be decomposed by successive applications of the completeness
relation:

=
∑

λ

1

aλ

λ

=
∑

λ,µ

1

aλ

1

aµ
µ

λ λ

=
∑

λ,µ,ν
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aλ

1
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1

aν ν
λ
µ . (5.9)

Hence, if we know clebsches forλ ⊗ µ → ν, we can also construct clebsches for
λ⊗µ⊗ν⊗ . . . → ρ. However, there is no unique way of building up the clebsches;
the above state can equally well be reduced by a different coupling scheme

=
∑

λ,µ,ν

1

aλ

1

aµ

1

aν

ν

µ

λ
. (5.10)
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Consider now a process in which a particle in the repµ interacts with a particle
in the repν by exchanging a particle in the repω:

σ ω
ρ ν

µ
. (5.11)

The final particles are in repsρ andσ. To evaluate the contribution of this exchange
to the spectroscopic levels of theµ-ν particles system, we insert the Clebsch-Gordan
series (5.8) twice, and eliminate one of the sums by the orthonormality relation (5.6):

σ ω
ρ ν

µ
=
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λ

dλ

λ
σ

ρ

dλ
µ
λ
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σ
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λλ
µ

νρ

σ µ

νρ
. (5.12)

By assumptionλ is an irrep, so we have a recoupling relation between the exchanges
in “s” and “t channels”:
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. (5.13)

We shall refer to as 3-j coefficients and as 6-j coefficients, and commit
ourselves to no particular normalization convention.

In atomic physics it is customary to absorb into the 3-vertex and define a 3-j
symbol [238, 287, 347](

λ µ ν
α β γ

)
= (−1)ω

1√

λ
ν
µ µ

λ
ν

. (5.14)

Hereα = 1, 2, . . . , dλ, etc., are indices,λ, µ, ν rep labels andω the phase conven-
tion. Fixing a phase convention is a waste of time, as the phases cancel in summed-
over quantities. All the ugly square roots, one remembers from quantum mechanics,

come from sticking
√

into 3-j symbols. Wigner [347] 6-j symbolsare related
to our 6-j coefficientsby

{
λ µ ν
ω ρ σ

}
=

(−1)ω√

λ
ν
µ λ

σ
ρ ω

σ
µ

ω
ρ

ν

ρλ

ω
νµ

σ

. (5.15)

The name3n-j symbol comes from atomic physics, where a recoupling involves
3n angular momentaj1, j2, . . . , j3n (see section14.2).

Most of the textbook symmetries of and relations between6-jsymbols are obvious
from looking at the corresponding diagrams; others follow quickly from complete-
ness relations.

If we know the necessary 6-j’s, we can compute the level splittings due to single
particle exchanges. In the next section we shall show that a far stronger claim can
be made: given the 3- and 6-j coefficients, we can computeall multiparticle matrix
elements.
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Skeletons
Vertex

insertions
Self-energy
insertions

Total
number

1-j 1

3j 1

6-j 2

9-j 5

12-j 16

Table 5.1 Topologically distinct types of Wigner3n-j coefficients, enumerated by drawing
all possible graphs, eliminating the topologically equivalent ones by hand. Lines
meeting in any 3-vertex correspond to any three irreduciblerepresentations with
a nonvanishing Clebsch-Gordan coefficient, so in general these graphs cannot be
reduced to simpler graphs by means of such as the Lie algebra (4.47) and Jacobi
identity (4.48).

5.2 WIGNER 3n-j COEFFICIENTS

An arbitrary higher-order contribution to a 2-particle scattering process will give a
complicated matrix element. The corresponding energy levels, crosssections,etc.,
are expressed in terms of scalars obtained by contracting all tensor indices; diagram-
matically they look like “vacuum bubbles,” with3n internal lines. The topologically
distinct vacuum bubbles in low orders are given in table5.1.

In group-theoretic literature, these diagrams are called3n-j symbols, and are
studied in considerable detail. Fortunately, any3n-j symbol that contains as a sub-
diagram a loop with, let us say, seven vertices,
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,
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can be expressed in terms of6-j coefficients. Replace the dotted pair of vertices by
the cross-channel sum (5.13):
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Now the loop has six vertices. Repeating the replacement forthe next pair of vertices,
we obtain a loop of length five:
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Repeating this process we can eliminate the loop altogether, producing 5-vertex-
trees times bunches of 6-j coefficients. In this way we have expressed the original
3n-j coefficients in terms of3(n-1)-j coefficients and6-j coefficients. Repeating
the process for the3(n-1)-j coefficients, we eventually arrive at the result that

(3n−j) =
∑(

products of ����
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)
. (5.18)

5.3 WIGNER-ECKART THEOREM

For concreteness, consider an arbitrary invariant tensor with four indices:

T =

ρ
ω

ν
µ

, (5.19)

whereµ, ν, ρ andω are rep labels, and indices and line arrows are suppressed. Now
insert repeatedly the completeness relation (5.8) to obtain
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In the last line we have used the orthonormality of projection operators — as in
(5.13) or (5.23).

In this way any invariant tensor can be reduced to a sum over clebsches (kinemat-
ics) weighted byreduced matrix elements:

〈T 〉α =
���� ����

α
. (5.21)

This theorem has many names, depending on how the indices aregrouped. IfT is
a vector, then only the 1-dimensional reps (singlets) contribute

Ta =

singlets∑

λ
���� µ
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a

. (5.22)

If T is a matrix, and the repsα, µ are irreducible, the theorem is calledSchur’s
Lemma(for an irreducible rep an invariant matrix is either zero, or proportional to
the unit matrix):
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If T is an “invariant tensor operator,” then the theorem is called theWigner-Eckart
theorem[347, 107]:
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(assuming thatµ appears only once inλ⊗µ Kronecker product). IfT has many in-
dices, as in our original example (5.19), the theorem is ascribed to Yutsis, Levinson,
and Vanagas [359]. The content of all these theorems is that they reduce spectro-
scopic calculations to evaluation of “vacuum bubbles” or “reduced matrix elements”
(5.21).

The rectangular matrices(Cλ)
α
σ from (3.27) do not look very much like the

clebsches from the quantum mechanics textbooks; neither does the Wigner-Eckart
theorem in its birdtrack version (5.24). The difference is merely a difference of
notation. In the bra-ket formalism, a clebsch forλ1 ⊗ λ2 → λ is written as

λ 1

λ 2
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= 〈λ1λ2λm|λ1m1λ2m2〉 . (5.25)
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Representing the[dλ × dλ] rep of a group elementg diagrammatically by a black
triangle,

Dλ
m,m′ , (g) = m’m , (5.26)

we can write the Clebsch-Gordan series (3.49) as
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An “invariant tensor operator” can be written as

〈λ2m2|T λ
m|λ1m1〉 = 2λ
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In the bra-ket formalism, the Wigner-Eckart theorem (5.24) is written as

〈λ2m2|T λ
m|λ1m1〉 = 〈λλ1λ2m2|λmλ1m1〉T (λ, λ1λ2) , (5.28)

where the reduced matrix element is given by

T (λ, λ1λ2)=
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. (5.29)

We do not find the bra-ket formalism convenient for the group-theoretic calculations
that will be discussed here.
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Permutations

The simplest example of invariant tensors is the products ofKronecker deltas. On
tensor spaces they represent index permutations. This is the way in which the sym-
metric groupSp, the group of permutations ofp objects, enters into the theory of
tensor reps. In this chapter, I introduce birdtracks notation for permutations, sym-
metrizations and antisymmetrizations and collect a few results that will be useful
later on. These are the (anti)symmetrization expansion formulas (6.10) and (6.19),
Levi-Civita tensor relations (6.28) and (6.30), the characteristic equations (6.50),
and the invariance conditions (6.54) and (6.56). The theory of Young tableaux (or
plethysms) is developed in chapter9.

6.1 SYMMETRIZATION

Operation of permuting tensor indices is a linear operation, and we can represent it
by a [d× d] matrix:

σβ
α = σ

a1a2...aq

b1...bp
,dp...d1

cq...c2c1 . (6.1)

As the covariant and contravariant indices have to be permuted separately, it is
sufficient to consider permutations of purely covariant tensors.

For 2-index tensors, there are two permutations:

identity:1ab,
cd= δdaδ

c
b =

flip: σ(12)ab,
cd= δcaδ

d
b = . (6.2)

For 3-index tensors, there are six permutations:

1a1a2a3
,b3b2b1 =δb1a1

δb2a2
δb3a3

=

σ(12)a1a2a3
,b3b2b1 =δb2a1

δb1a2
δb3a3

=

σ(23)= , σ(13) =

σ(123)= , σ(132) = . (6.3)

Subscripts refer to the standard permutation cycles notation. For the remainder of
this chapter we shall mostly omit the arrows on the Kroneckerdelta lines.
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The symmetric sum of all permutations,

Sa1a2...ap
,bp...b2b1 =

1

p!

{
δb1a1

δb2a2
. . . δbpap

+ δb1a2
δb2a1

. . . δbpap
+ . . .

}

S =

...

=
1

p!

{

...

+

...

+

...

+ . . .

}
, (6.4)

yields the symmetrization operatorS. In birdtracknotation, a white bar drawn across
p lines will always denote symmetrization of the lines crossed. A factor of1/p! has
been introduced in order forS to satisfy the projection operator normalization

S2=S

... = ... . (6.5)

A subset of indicesa1, a2, . . . aq, q < p can be symmetrized by symmetrization
matrixS12...q

(S12...q)a1a2...aq...ap
,bp...bq...b2b1 =

1

q!

{
δb1a1

δb2a2
. . . δbqaq

+ δb1a2
δb2a1

. . . δbqaq
+ . . .

}
δ
bq+1
aq+1 . . . δ

bp
ap

S12...q=
...

... ...

2
1

q . (6.6)

Overall symmetrization also symmetrizes any subset of indices:

SS12...q=S

...
......

...

... =

... ...

... ... . (6.7)

Any permutation has eigenvalue1 on the symmetric tensor space:

σS=S

...

=

...

. (6.8)

Diagrammatically this means that legs can be crossed and uncrossed at will.
The definition (6.4) of the symmetrization operator as the sum of allp! permuta-

tions is inconvenient for explicit calculations; a recursive definition is more useful:

Sa1a2...ap
,bp...b2b1 =

1

p

{
δb1a1

Sa2...ap
,bp...b2 +δb1a2

Sa1a3...ap
,bp...b2 + . . .

}

S=
1

p

(
1 + σ(21) + σ(321) + . . .+ σ(p...321)

)
S23...p

...

=
1

p

{

...

+

...

+

...

+ . . .

}
, (6.9)



GroupTheory version 9.0.1, April 8, 2011

52 CHAPTER 6

which involves onlyp terms. This equation says that if we start with the first index,
we end up either with the first index, or the second index and soon. The remaining
indices are fully symmetric. Multiplying byS23 . . . p from the left, we obtain an
even more compact recursion relation with two terms only:

...

=
1

p

(

...

+ (p− 1)

... ... ...

)
. (6.10)

As a simple application, consider computation of a contraction of a single pair of
indices:

p-2
-1p

...

1
=

1

p

{

... + (p− 1) ... ... ...

}

=
n+ p− 1

p ...

Sapap−1...a1
,b1...bp−1ap =

n+ p− 1

p
Sap−1...a1

,b1...bp−1 . (6.11)

For a contraction in(p− k) pairs of indices, we have

p

k

1

... ...
...

...

...

...
...

=
(n+ p− 1)!k!

p!(n+ k − 1)! k

1

... ...

...

. (6.12)

The trace of the symmetrization operator yields the number of independent compo-
nents of fully symmetric tensors:

dS = trS = ... =
n+ p− 1

p

...

=
(n+ p− 1)!

p!(n− 1)!
. (6.13)

For example, for 2-index symmetric tensors,

dS = n(n+ 1)/2 . (6.14)

6.2 ANTISYMMETRIZATION

The alternating sum of all permutations,

Aa1a2...ap
,bp...b2b1 =

1

p!

{
δb1a1

δb2a2
. . . δbpap

− δb1a2
δb2a1

. . . δbpap
+ . . .

}

A =

...

=
1

p!

{

...

−

...

+

...

− . . .

}
, (6.15)
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yields the antisymmetrization projection operatorA. In birdtrack notation, antisym-
metrization ofp lines will always be denoted by a black bar drawn across the lines.
As in the previous section

A2=A

... = ...

...

=

...

(6.16)

and in addition

SA=0
... =0

...

=
...

= 0 . (6.17)

A transposition has eigenvalue−1 on the antisymmetric tensor space

σ(i,i+1)A=−A

...

=−

...

. (6.18)

Diagrammatically this means that legs can be crossed and uncrossed at will, but
with a factor of−1 for a transposition of any two neighboring legs.

As in the case of symmetrization operators, the recursive definition is often com-
putationally convenient

...

=
1

p

{

...

−

...

+

...

− . . .

}

=
1

p

{

...

− (p− 1)

...... ...

}
. (6.19)

This is useful for computing contractions such as

p
p−2

−1

...

1

...

=
n− p+ 1

p ...

Aaap−1...a1
,b1...bp−1a=

n− p+ 1

p
Aap−1...a1

,b1...bp−1 . (6.20)

The number of independent components of fully antisymmetric tensors is given by

dA=trA = ... =
n− p+ 1

p

n− p+ 2

p− 1
. . .

n

1

=

{ n!
p!(n−p)! , n ≥ p

0 , n < p
. (6.21)
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For example, for 2-index antisymmetric tensors the number of independent compo-
nents is

dA =
n(n− 1)

2
. (6.22)

Tracing(p− k) pairs of indices yields

+1

...

...

k

...

... ...

p

k

1

...

...

=
k!(n− k)!

p!(n− p)! ...
k...

1
...

. (6.23)

The antisymmetrization tensorAa1a2...,
bp...b2b1 has nonvanishing components, only

if all lower (or upper) indices differ from each other. If thedefining dimension is
smaller than the number of indices, the tensorA has no nonvanishing components:

...

1

...

2

p

= 0 if p > n . (6.24)

This identity implies that forp > n, not all combinations ofp Kronecker deltas are
linearly independent. A typical relation is thep = n+ 1 case

0 =

+1n1 ...

...

2

=
...

−
...

+
...

− . . . . (6.25)

For example, forn = 2 we have

n = 2 : 0=

c

f

ba

e d

− − + + − (6.26)

0= δfaδ
e
bδ

d
c − δfaδ

e
cδ

d
b − δfb δ

e
aδ

d
c + δfb δ

e
cδ

d
a + δfc δ

e
aδ

d
b − δfc δ

e
bδ

d
a .

6.3 LEVI-CIVITA TENSOR

An antisymmetric tensor, withn indices in defining dimensionn, has only one
independent component (dn = 1 by (6.21)). The clebsches (4.17) are in this case
proportional to theLevi-Civita tensor:

(CA)1 ,
an...a2a1 =Cǫan...a2a1 =

1
a2

an

a

...

(CA)a1a2...an
,1=Cǫa1a2...an

=
1

a2

an

a

...

, (6.27)

with ǫ12...n = ǫ12...n = 1. This diagrammatic notation for the Levi-Civita tensor was
introduced by Penrose [281]. The normalization factorsC are physically irrelevant.
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They adjust the phase and the overall normalization in orderthat the Levi-Civita
tensors satisfy the projection operator (4.18) and orthonormality (4.19) conditions:

1

N !
ǫb1b2...bnǫ

a1a2...an =Ab1b2...bn ,
an...a2a1

......

= ...

1

N !
ǫa1a2...an

ǫa1a2...an =δ11 = 1 ,

...

= 1 . (6.28)

With our conventions,

C =
in(n−1)/2

√
n!

. (6.29)

The phase factor arises from the hermiticity condition (4.15) for clebsches (remem-
ber that indices are always read in the counterclockwise order around a diagram),

(
1

a2

an

a

...

)∗

=
1

a2

an

a

...

i−φǫa1a2...an
= i−φǫan...a2a1

.

Transposing the indices

ǫa1a2...an
= −ǫa2a1...an

= . . . = (−1)n(n−1)/2ǫan...a2a1
,

yieldsφ = n(n − 1)/2. The factor1/
√
n! is needed for the projection operator

normalization (3.50).
Givenn dimensions we cannot label more thann indices, so Levi-Civita tensors

satisfy

0 =

1+

...

...

...1 2 3 n

. (6.30)

For example, for

n = 2 : 0= − +

0= δdaǫbc − δdb ǫac + δdc ǫab . (6.31)

This is actually the same as the completeness relation (6.28), as can be seen by
contracting (6.31) with ǫcd and using

n = 2 : = =
1

2

ǫacǫ
bc=δba . (6.32)

This relation is one of a series of relations obtained by contracting indices in the
completeness relation (6.28) and substituting (6.23):

ǫan...ak+1bk...b1ǫ
an...ak+1ak...a1 =k!(n− k)!Abk...b1 ,

a1...ak
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...

......

=
k!(n− k)!

n!

...

. (6.33)

Such identities are familiar from relativistic calculations(n = 4):

ǫabcdǫ
agfe=δgfebcd , ǫabcdǫ

abfe = 2δfecd

ǫabcdǫ
abce=6δed , ǫabcdǫ

abcd = 24 , (6.34)

where the generalized Kronecker delta is defined by

1

p!
δb1b2...bpa1a2...ap

= Aa1a2...ap
,bp...b2b1 . (6.35)

6.4 DETERMINANTS

Consider an[np×np] matrixMα
β defined by a direct product of[n× n] matrices

M b
a

Mα
β=Ma1a2...ap

,bp...b2b1 = M b1
a1
M b2

a2
. . .M bp

ap

M =

... M =

...

, (6.36)

where

M b
a =

ba
. (6.37)

The trace of the antisymmetric projection ofMα
β is given by

trp AM =Aabc...d,
d′...c′b′a′

Ma
a′M b

b′ . . .M
d
d′

=
...

... . (6.38)

The subscriptp on trp(. . .) distinguishes the traces on[np × np] matricesMβ
α

from the[n×n]matrix tracetrM . To derive a recursive evaluation rule fortrp AM ,
use (6.19) to obtain

...
=

1

p





... − (p− 1)
...



 . (6.39)



GroupTheory version 9.0.1, April 8, 2011

PERMUTATIONS 57

Iteration yields

...

...

=

p−1

...

... −
...

... p−2
+ . . .±

...

∓

P
M

...

.

(6.40)
Contracting withM b

a, we obtain

...

... =

...

...

− ...

...

. . .− (−1)p ...

trp AM =
1

p

p∑

k=1

(−1)k−1 (trp−k AM) trMk . (6.41)

This formula enables us to compute recursively alltrp AM as polynomials in traces
of powers ofM :

tr0 AM =1 , tr1 AM = = trM (6.42)

=
1

2

(
−

)

tr2 AM =
1

2

{
(trM)2 − trM2

}
(6.43)

=
1

3



 − +





tr3 AM =
1

3!

{
(trM)3 − 3(trM)(trM2) + 2 trM3

}
(6.44)

=
1

4



 − + −





tr4 AM =
1

4!

{
(trM)4 − 6(trM)2 trM2

+ 3(trM2)2 + 8 trM3 trM − 6 trM4
}
. (6.45)
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Forp = n (M b
a are[n× n] matrices) the antisymmetrized trace is the determinant

detM = trn AM = Aa1a2...an
,bn...b2b1 Ma1

b1
Ma2

b2
. . .Man

bn
. (6.46)

The coefficients in the aboveexpansions are simple combinatoric numbers. A general
term for(trM ℓ1)α1 · · · (trM ℓs)αs , with α1 loops of lengthℓ1, α2 loops of length
ℓ2 and so on, is divided by the numberof ways in which this pattern may be obtained:

ℓα1

1 ℓα2

2 . . . ℓαs
s α1!α2! . . . αs! . (6.47)

6.5 CHARACTERISTIC EQUATIONS

We have noted that the dimension of the antisymmetric tensorspace is zero for
n < p. This is rather obvious; antisymmetrization allows each label to be used at
most once, and it is impossible to label more legs than there are labels. In terms of
the antisymmetrization operator this is given by the identity

A = 0 if p > n . (6.48)

This trivial identity has an important consequence: it guarantees that any[n × n]
matrix satisfies a characteristic (or Hamilton-Cayley or secular) equation. Takep =
n+ 1 and contract withM b

a n index pairs ofA:

Aca1a2...an
,bn...b2b1dMa1

b1
Ma2

b2
. . .Man

bn
=0

dc

...
...

=0 . (6.49)

We have already expanded this in (6.40). Forp = n+1we obtain thecharacteristic
equation

0=

n∑

k=0

(−1)k(trn−k AM)Mk , (6.50)

=Mn − (trM)Mn−1 + (tr2 AM)Mn−2 − . . .+ (−1)n (detM)1 .

6.6 FULLY (ANTI)SYMMETRIC TENSORS

We shall denote a fullysymmetrictensor by a small circle (white dot)

dabc...f =

dcba

...

...

. (6.51)

A symmetric tensordabc...d = dbac...d = dacb...d = . . . satisfies

Sd=d

. ..

...
=

...

...
. (6.52)
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If this tensor is also an invariant tensor, the invariancecondition (4.36) can be written
as

0= + + = + +

=p (p = number of indices). (6.53)

Hence, the invariance condition for symmetric tensors is

0 =

...

. ..
. (6.54)

The fully antisymmetrictensors withodd numbers of legs will be denoted by
black dots

fabc...d =

dcba

...

...

, (6.55)

with the invariance condition stated compactly as

0 =
...

...

. (6.56)

If the number of legs iseven, an antisymmetric tensor isanticyclic,

fabc...d = −fbc...da , (6.57)

and the birdtrack notation must distinguish the first leg. A black dot is inadequate
for the purpose. A bar, as for the Levi-Civita tensor (6.27), or a semicircle for the
symplectic invariant introduced below in (12.3), and fully skew-symmetric invariant
tensors investigated in (15.27)

fab...c = ... , fab...c = ... (6.58)

or a similar notation fixes the problem.

6.7 IDENTICALLY VANISHING TENSORS

Noting that a given group-theoreticweight vanishesidenticallyis often an important
step in a birdtrack calculation. Some examples are

≡0 , ≡ 0 , (6.59)

≡0 , ≡ 0 . (6.60)
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In graph theory [268, 294] the left graph in (6.59) is known as the Kuratowsky graph,
and the right graph in (6.60) as the Peterson graph.

≡0 , ≡ 0 , ≡ 0 , (6.61)

≡0 , ≡ 0 , (6.62)

≡0 , ≡ 0 . (6.63)

The above identities hold for any antisymmetric 3-index tensor; in particular, they
hold for the Lie algebra structure constantsiCijk. They are proven by mapping a
diagram into itself by index transpositions. For example, interchange of the top and
bottom vertices in (6.59) maps the diagram into itself, but with the(−1)5 factor.

From the Lie algebra (4.47) it also follows that for any irreducible rep we have

��
��
��
��

��
��
��
��

��
��
��
��

= 0 , ��
��
��

��
��
��

���
���
���
���

��
��
��

��
��
��

������
= 0 . (6.64)
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Chapter Seven

Casimir operators

The construction of invariance groups, developed elsewhere in this monograph, is
self-contained, and none of the material covered in this chapter is necessary for
understanding the remainder of the monograph. We have argued in section5.2that
all relevant group-theoretic numbers are given by vacuum bubbles (reduced matrix
elements,3n-j coefficients,etc.), and we have described the algorithms for their
evaluation. That is all that is really needed in applications.

However, one often wants to cross-check one’s calculation against the existing
literature. In this chapter we discuss why and how one introduces casimirs (or Dynkin
indices), we construct independent Casimir operators for the classical groups and
finally we compile values of a few frequently used casimirs.

Our approach emphasizes the role of primitive invariants inconstructing reps
of Lie groups. Given a list of primitives, we present a systematic algorithm for
constructing invariant matricesMi and the associated projection operators (3.48).

In the canonical, Cartan-Killing approach one faces a somewhat different prob-
lem. Instead of the primitives, one is given the generatorsTi explicitly and no other
invariants. Hence, the invariant matricesMi can be constructed only from contrac-
tions of generators; typical examples are matrices

M2 =
��
��
��

��
��
�� µ

, M4 =

σ

��
��
��
��

��
��
��
�� µ , . . . , (7.1)

whereσ, µ could be any reps, reducible or irreducible. Such invariantmatrices are
calledCasimir operators.

What is a minimal set of Casimir operators, sufficient to reduce any rep to its
irreducible subspaces? Such sets can be useful, as the correspondingr Casimir
operators uniquely label each irreducible rep by their eigenvaluesλ1, λ2, . . . λr .

The invariance condition for any invariant matrix (3.31) is

0 = [Ti,M ] =

��
��
��

��
��
��

��
��
��
��

µ
−

��
��
��
��

��
��
��

��
��
��

µ

so all Casimir operators commute

M2M4 =
µ

=
µ
= M4M2, etc.,

and, according to section3.6, can be used to simultaneously decompose the repµ.
If M1, M2, . . . have been used in the construction of projection operators (3.48),
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any matrix polynomialf(M1,M2 . . .) takes valuef(λ1, λ2, . . .) on the irreducible
subspace projected byPi, so polynomials inMi induce no further decompositions.
Hence, it is sufficient to determine the finite number ofMi’s that form a polynomial
basis for all Casimir operators (7.1). Furthermore, as we show in the next section, it is
sufficient to restrict the consideration to the symmetrizedcasimirs. This observation
enables us to explicitly construct, in section7.2, a set of independent casimirs for
each classical group.

Exceptional groups pose a more difficult challenge, partially met here in a piece-
meal fashion in chapters on each of the exceptional groups. For a definitive, sys-
tematic calculation of all casimirs for all simple Lie groups, consult van Ritbergen,
Schellekens, and Vermaseren [295].

7.1 CASIMIRS AND LIE ALGEBRA

There is no general agreement on a unique definition of a Casimir operator. We
could choose to call the trace of a product ofk generators

tr(TiTj . . . Tk) =
��
��
��
��

i

.
j

k

.
.

.

, (7.2)

akth ordercasimir. With such definition,

tr(TjTi . . . Tk) =
��
��
��
��

j

i k

.
.

. .

would also be a casimir, independent of the first one. However, all traces ofTi’s that
differ by a permutation of indices are related by Lie algebra. For example,

.

��
��
��

��
��
��

. .
=

.

��
��
��

��
��
��

. .
−

���� .

��
��
��

��
��
��

. .
. (7.3)

The last term involves a(k-1)th order casimir and is antisymmetric in thei, j indices.
Only the fully symmetrized traces

hij...k ≡ 1

p!

∑

perm

tr(TiTj . . . Tk) =

��
��
��
��

...

... (7.4)

are not affected by the Lie algebra relations. Hence from nowon, we shall use the
term “casimir” to denotesymmetrizedtraces (ref. [249] follows the same usage,
for example). Any unsymmetrized tracetr(TiTj . . . Tk) can be expressed in terms
of the symmetrized traces. For example, using the symmetricgroup identity (see
figure9.1)

= +
������������
������������
������������
������������+

4

3
�������
�������
�������
�������

+
4

3
�������
�������
�������
�������

, (7.5)
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the Jacobi identity (4.48) and thedijk definition (9.87), we can express the trace of
four generators in any rep of any semisimple Lie group in terms of the quartic and
cubic casimirs:

��
��
��
��

=

��
��
��
��

+
1

2
+

1

2
+

1

2
+

1

6
+

1

6
. (7.6)

In this way, an arbitrarykth order trace can be written as a sum over tree contrac-
tions of casimirs. The symmetrized casimirs (7.4) are conveniently manipulated as
monomial coefficients:

trXk = hij...m xixj . . . xm. (7.7)

For a repλ,X is a[dλ×dλ]matrixX = xiTi, wherexi is an arbitraryN -dimensional
vector. We shall also use a birdtrack notation (6.37):

Xa
b = ba =

∑

i

xi ��
��
��
��

ba

i

. (7.8)

The symmetrization (7.4) is automatic

trXk = ... =
∑

ij···k

��
��
��
��

j ki ...

... xixj . . . xk =
∑

ij···k
i

��
��
��
��

kj ...

... xixj . . . xk . (7.9)

7.2 INDEPENDENT CASIMIRS

Not all trXk are independent. For ann-dimensional rep a typical relation relating
varioustrXk is the characteristic equation (6.50):

Xn = (trX)Xn−1 − (tr2 AX)Xn−2 + . . .± (detX). (7.10)

Scalar coefficientstrk AX are polynomials intrXm, computed in section6.4. The
characteristic equation enables us to express anyXp, p ≥ n in terms of the matrix
powersXk, k < n and the scalar coefficientstrXk, k ≤ n. Therefore, if a group
has ann-dimensional rep, it has at mostn independent casimirs,

��
��
��

��
��
��

,

��
��
��

��
��
��

,

��
��
��

��
��
��

,

��
��
��
��

, . . . ...

��
��
��
��

...1 2 n

corresponding totrX, trX2, trX3, . . . trXn.
For a simple Lie group, the number of independent casimirs iscalled therankof

the group and is always smaller thann, the dimension of the lowest-dimensional rep.
For example, for all simple groupstrTi = 0, the first casimir is always identically
zero. For this reason, the rank ofSU(n) isn− 1, and the independent casimirs are

SU(n) :

��
��
��

��
��
��

,

��
��
��

��
��
��

,

��
��
��
��

, . . . , ...

��
��
��
��

...1 2 n

. (7.11)
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The defining reps ofSO(n),Sp(n),G2,F4,E7 andE8 groups have an invertible
bilinear invariantgab, either symmetric or skew-symmetric. Insertingδca = gabg

bc

any place in a trace ofk generators, and moving the tensorgab through the generators
by means of the invariance condition (10.5), we can reverse the defining rep arrow:

...

��
��
��
��

���
���
���

���
���
��� =

��
��
��
��

...
���
���
���

���
���
��� = − ���

���
���

���
���
���

���
���
���
���

...
= . . . = (−1)k

...

��
��
��
��

���
���
���

���
���
���

. (7.12)

Hence for the above groups,trXk = 0 for k odd, and all their casimirs are of even
order.

The odd and the even-dimensional orthogonal groups differ in the orders of in-
dependent casimirs. Forn = 2r + 1, there arer independent casimirs

SO(2r + 1) :

��
��
��

��
��
��

,

��
��
��
��

, . . . ,

r

��
��
��
��

1 ...2

...

2

. (7.13)

Forn = 2r, a symmetric invariant can be formed by contractingr defining reps
with a Levi-Civita tensor (the adjoint projection operator(10.13) is antisymmetric):

Ir(x) = ... . (7.14)

trX2r is not independent, as by (6.28), it is contained in the expansion ofIr(x)2

Ir(x)
2 = ...... = ... ...

≃
r21 2

��
��
��
��

...

+ . . . . (7.15)

Hence, ther independent casimirs for even-dimensional orthogonal groups are

SO(2r) :

��
��
��

��
��
��

,

��
��
��
��

, . . . ,

��
��
��
��

1 2

...

... r -2)(2

,
���
���
���

���
���
���

��
��
��

��
��
�������������������������

�����������������������
�����������������������
�����������������������

2 r...1

��
��
��

��
��
��

...
. (7.16)

For Sp(2r) there are no special relations, and ther independent casimirs are
trX2k, 0 < l ≤ r;

Sp(2r) :

��
��
��

��
��
��

,

��
��
��
��

, . . . ,

r

��
��
��
��

1 ...2

...

2

. (7.17)

The characteristic equation (7.10), by means of which we count the independent
casimirs, applies to the lowest-dimensional rep of the group, and one might worry
that other reps might be characterized by further independent casimirs. The answer
is no; all casimirs can be expressed in terms of the defining rep. ForSU(n), Sp(n)
andSO(n) tensor reps this is obvious from the explicit form of the generators in
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Ar 2, 3, …, r + 1 ∼ SU(r + 1)
Br 2, 4, 6, …,2r ∼ SO(2r + 1)
Cr 2, 4, 6, …,2r ∼ Sp(2r)
Dr 2, 4, …, 2r − 2, r ∼ SO(2r)
G2 2, 6
F4 2, 6, 8, 12
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30

Table 7.1 Betti numbers for the simple Lie groups.

higher reps (see section9.4 and related results forSp(n) andSO(n)); they are
tensor products of the defining rep generators and Kroneckerdeltas, and a higher
rep casimir always reduces to sums of the defining rep casimirs, times polynomials
in n (see examples of section9.7).

For the exceptional groups, cubic and higher defining rep invariants enter, and
the situation is not so trivial. We shall show below, by explicit computation, that
trX3 = 0 for E6 andtrX4 = c(trX2)2 for all exceptional groups. We shall also
prove the reduction to the2nd- and6th-order casimirs forG2 in section16.4and
partially prove the reduction for other exceptional groupsin section18.8. The orders
of all independent casimirs are known [30, 289, 134, 54] as the Betti numbers, listed
here in table7.1. There are too many papers on computation of casimirs to even
attempt a survey here; we recommend ref. [295].

7.3 ADJOINT REP CASIMIRS

For simple Lie algebras the Cartan-Killing bilinear form (4.41) is proportional to
δij , so by the argument of (7.12) all adjoint rep casimirs are even. In addition, the
Jacobi identity (4.48) relates a loop to a symmetrized trace together with a set of tree
contractions of lower casimirs, linearly indepenent underapplications of the Jacobi
identity. For example, we have from (7.6)

��
��
��
��

=

��
��
��
��

+
1

6

(
+

)
. (7.18)

The numbers of linearly independent tree contractions are discussed in ref. [73].
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7.4 CASIMIR OPERATORS

Most physicists would not refer totrXk as a casimir. Casimir’s [49] quadratic
operator and its generalizations [289] are[dµ × dµ] matrices:

(Ip)
b
a =

��
��
��
��

��
��
��

��
��
��

λ

...

...a b
µ

21 p

= [trλ(Tk . . . TiTj)] (TiTj . . . Tk)
b
a. (7.19)

We have shown in section5.2 that all invariants are reducible to6j coefficients.
Ip’s are particularly easy to express in terms of6j’s. Define

Mα
b ,

µ
β =

��
��
��
��

��
��
��
��a

µ
b

βα λ

α, β = 1, . . . , dλ , a, b = 1, 2, . . . , dµ . (7.20)

Inserting the complete Clebsch-Gordan series (5.8) for λ⊗ µ, we obtain

M =
∑

ρ

���
���
���
���

���
���
���
���

����
����
����

����
����
������

��
��

��
��
�� ��

��
��
��

��
��
��
��

��
��
��

��
��
��

λ

µ
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ρ
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λ
=
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ρ
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λ
µ µ

λ

dρ
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µ µ

ρ λλ
. (7.21)

The eigenvalues ofM are Wigner’s6j coefficients (5.15). It is customary to express
these6j’s in terms of quadratic Casimir operators by using the invariance condition
(4.40):
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µ
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ρ
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ρ

µ

λ + C2(µ) ��
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��
ρ

. (7.22)

This is an ancient formula familiar from quantum mechanics textbooks: if the total
angular momentum isJ = L + S, thenL · S = 1

2 (J
2 − L2 − S2). In the present

case we trace both sides to obtain

1

dρ ���
���
���
���

��
��
��
�� ���

���
���

���
���
���

���
���
���
���

���
���
���

���
���
���λ

µµ

λ

ρ

= −1

2
{C2(ρ)− C2(λ)− C2(µ)} . (7.23)

Thepth order casimir is thus [256]

(Ip)
b
a=(Mp)αbaα

=

irreduc.∑

ρ

(
C2(ρ)− C2(λ)− C2(µ)

2

)p
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µ µ
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.

If µ is an irreducible rep, (5.23) yields
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,
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and theµ rep eigenvalue ofIp is given by
∑

ρ

(
C2(ρ)− C2(λ)− C2(µ)

2

)p

dρ . (7.24)

Here the sum goes over allρ ⊂ λ⊗ µ, whereρ, λ andµ are irreducible reps.
Another definition of the generalized Casimir operator, in the spirit of (7.4), uses

the fully symmetrized trace:

��
��
��
��

��
��
��

��
��
��

µ

...

λ

...
= h(λ)ij...k(TiTj . . . Tk)

b
a . (7.25)

We shall return to this definition in the next section.

7.5 DYNKIN INDICES

As we have seen so far, there are many ways of defining casimirs; in practice it is
usually quicker to directly evaluate a given birdtrack diagram than to relate it to
somebody’s “standard” casimirs. Still, it is good to have anestablished convention,
if for no other reason than to be able to cross-check one’s calculation against the
tabulations available in the literature.

Usually a rep is specified by its dimension. If the group has several inequivalent
reps with the same dimensions, further numbers are needed touniquely determine
the rep. Specifying theDynkin index[104],

ℓλ =

��
��
��
��

��
��
��
��

=
trλ(TiTi)

tr(CiCi)
, (7.26)

usually (but not always) does the job. A Dynkin index is easy to evaluate by birdtrack
methods. By the Lie algebra (4.47), the defining rep Dynkin index is related to a6j
coefficient:

ℓ−1 =
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��
��
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��
��
��

=
2

a2N

{
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− ��
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}
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n
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N

1
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������������ . (7.27)

The6j coefficient ���
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���
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= tr(TiTjTiTj) is evaluated by the usual birdtrack tricks.

ForSU(n), for example
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n
. (7.28)

The Dynkin index of a repρ in the Clebsch-Gordan series forλ⊗ µ is related to
a6j coefficient by (7.23):

ℓρ/dρ = ℓλ/dλ + ℓµ/dµ + 2
ℓ

N

1
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µµ
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. (7.29)
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SU(n):
���� ����

��������

=

{
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+
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�� }

+ 2

{
+ +

}

SO(n): = (n− 8)
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+
����

����

+ �������� + + +

Sp(n): = (n+ 8)
��
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+
����

����

+ �������� + + +

SO(3): = 1
4

{
+

}

SU(n): = 2n

��
��
��
��

+ 6

SO(n): = (n− 8)

��
��
��
��

+ 3

Sp(n): = (n+ 8)

��
��
��
��

+ 3

Table 7.2 (Top) Expansions of the adjoint rep quartic casimirs in terms of the defining rep, and
(bottom) reduction of adjoint quartic casimirs to the defining rep quartic casimirs,
for the classical simple Lie algebras. The normalization (7.38) is set toa = 1.

We shall usually evaluate Dynkin indices by this relation. Another convenient
formula for evaluation of Dynkin indices for semisimple groups is

ℓλ =
trλ X

2

trA X2
, (7.30)

with X defined in section6.7. An application of this formula is given in section9.7.
The form of the Dynkin index is motivated by a few simple considerations. First,

we want an invariant number, so we trace all indices. Second,we want a pure,
normalization independent number, so we take a ratio.tr(CiCi) is the natural nor-
malization scale, as all groups have the adjoint rep. Furthermore, unlike the Casimir
operators (7.19), which have single eigenvaluesIp(λ) only for irreducible reps, the
Dynkin index is a pure number for both reducible and irreducible reps. [Exercise:
compute the Dynkin index forU(n).]

The above criteria lead to the Dynkin index as the unique group-theoretic scalar
corresponding to the quadratic Casimir operator. The choice of group-theoretic
scalars corresponding to higher casimirs is rather more arbitrary. Consider the re-
ductions ofI4 for the adjoint reps, tabulated in table7.2. (TheSU(n) was evaluated
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as an introductory example, section2.2. The remaining examples are evaluated by
inserting the appropriate adjoint projection operators, derived below.)

Quartic casimirs contain quadratic bits, and in general, expansions ofh(λ)’s in
terms of the defining rep will contain lower-order casimirs.To construct the “pure”
pth order casimirs, we introduce

=
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=
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(7.31)

=
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, etc.,

and fix the constantsA, B, C, . . . by requiring that these casimirs areorthogonal:
... = 0 ,

... = 0 , . . . . (7.32)

Now we can define thegeneralizedor orthogonalDynkin indices [260, 295] by

D(0)(µ)=
��
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��
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��
��

= dµ , D(2)(µ) =
��
��
��

��
��
��

D(3)(µ)=
��
��
��

��
��
��

, . . . , D(p)(µ) =
��
��
��
��

...
. ..

2
3

1 p
, (7.33)

where the thick line stands forµ rep. Here we have chosen normalizationtr(CiCi) =
1.

The generalized Dynkin indices are not particularly convenient or natural from the
computational point of view (see ref. [295] for discussion of indices in “orthogonal
basis”) but they do have some nice properties. For example (as we shall show later
on), the exceptional groupstrX4 = C(trX2)2 are singled out byD(4) = 0.

If µ is a Kronecker product of two reps,µ = λ ⊗ ρ, the generalized Dynkin
indices satisfy
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µ
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λ p
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... + .
p
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.. ,

D(p)(µ)=D(p)(λ)dρ + dλD
(p)(ρ) > 0 , (7.34)

as the cross terms vanish by the orthonormality conditions (7.32). Substituting the
completeness relation (5.7), λ⊗ ρ =

∑
σ, we obtain a family ofsum rulesfor the

generalized Dynkin indices:
∑

σ

.

σ
��
��
��

��
��
��

.. =
∑

σ

D(p)(σ) = D(p)(λ)dρ + dλD
(p)(ρ). (7.35)



GroupTheory version 9.0.1, April 8, 2011

70 CHAPTER 7

Forp = 2 this is aλ⊗ ρ =
∑

σ sum rule for Dynkin indices (7.28)

ℓλdρ + dλℓρ =
∑

σ

ℓσ , (7.36)

useful in checking Clebsch-Gordan decompositions.

7.6 QUADRATIC, CUBIC CASIMIRS

As the low-order Casimir operators appear so often in physics, it is useful to list
them and their relations.

Given two generatorsTi, Tj in [n×n] repλ, there are only two ways to form a
loop:

��
��
��
��

,
���
���
���
��� .

If the λ rep is irreducible, we defineCF casimir as

���
���
���
��� =CF ��

��
��

��
��
��

(TiTi)
b
a=CF δ

b
a. (7.37)

If the adjoint rep is irreducible, we define

��
��
��
��

=a

trTiTj=a δij . (7.38)

Usually we takeλ to be the defining rep and fix the overall normalization by taking
a = 1. For the adjoint rep (dimensionN ), we use notation

i j
= CikℓCjkℓ = CA

ji
. (7.39)

Existence of the quadratic Casimir operatorCA is a necessary and sufficient condi-
tion that the Lie algebra is semisimple [10, 104, 274]. For compact groupsCA > 0.
CF , a, CA, andℓ, the Dynkin index (7.28), are related by tracing the above expres-
sions:

��
��
��
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��
��

= nCF = Na = NCAℓ. (7.40)

While the Dynkin index is normalization independent, one ofCF , a or CA has to
be fixed by a convention. The cubic invariants formed fromTi’s andCijk ’s are (all
but one) reducible to the quadratic Casimir operators:
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(
aN

n
− CA

2

)
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�� (7.41)

=
CA
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��
�� (7.42)

=
CA

2
. (7.43)
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This follows from the Lie algebra (4.47)

− = .

The one exception is the symmetrized third-order casimir

1

2
dijk = ≡ 1

2a

{
���
���
���
���

+ ���
���
���
���

}
. (7.44)

By (7.12) this vanishes for all groups whose defining rep is not complex. That leaves
behind onlySU(n), n ≥ 3 andE6. As we shall show in section18.6, dijk = 0 for
E6, so onlySU(n) groups have nonvanishing cubic casimirs.

7.7 QUARTIC CASIMIRS

There is no unique definition of a quartic casimir. Any group-theoretic weight that
contains a trace of four generators

��
��
��

��
��
��

(7.45)

can be called aquartic casimir. For example, a 4-loop contribution to theQCD β
function

(7.46)

contains two quartic casimirs. This weight cannot be expressed as a function of
quadratic casimirs and has to be computed separately for each rep and each group.
For example, such quartic casimirs need to be evaluated for the purpose of classifi-
cation of grand unified theories [256], weak coupling expansions in lattice gauge
theories [80] and the classification of reps of simple Lie algebras [234].

Not every birdtrack diagram that contains a trace of four generators is a genuine
quartic casimir. For example,
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(7.47)

is reducible by (7.42) to

1

4
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��
��
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(7.48)

and equals14aC
2
A for a simple Lie algebra. However, if all loops contain four vertices

or more, Lie algebra cannot be used to reduce the diagram. Forexample,
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. (7.49)
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U(n) n2 n2+5
6 2n2(n2 + 12) 2n2(n2+36)

3
2n2+1
3n

SU(n) n4−3n2+3
n2

n4−6n2+18
6n2 2n2(n2 + 12) 2n2(n2+36)

3
2n2−3

3n

SO(n) n2−3n+4
8

n2−n+4
24

(n−2)(n3−9n2+54n−104)
8

(n−2)(n3−15n2+138n−296)
24

2n−1
6

Sp(n) n2+3n+4
8

n2+n+4
24

(n+2)(n3+9n2+54n+104)
8

(n+2)(n3+15n2+138n+296)
24

2n+1
6

G2(7)
5
3

1
3

164
3

100
3

4
3

F4(26)
7
8

1
8

79
8

25
8

3
2

E6(27)
41
27

5
27 28 20

3
20
9

E7(56)
53
64

5
64 8 320

81
15
8

E8(248)
11
120

1
120

11
120

1
120

5
6

Table 7.3 Various quartic casimirs for all simple Lie algebras. The normalization in (7.38) is set toa = 1.
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1
N
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��
��

��
��
��

��
��
��
��

= 1
ℓ4(F )

SU(n): (n2−4)(n2−9)
6(n2+1) 2n

SO(n): (n+1)(n2−4)(n−3)
24(n2−n+4) n− 8

Sp(n): (n−1)(n2−4)(n+3)
24(n2+n+4) n+ 8

Normalization:

��
��
��
��

=

Table 7.4 Quartic Dynkin indices (7.33) for the defining and the adjoint reps of classical
groups. For the exceptional groups the quartic Dynkin indices vanish identically.

The second diagram on the right-hand side is reducible, but the first one is not.
Hence, at least one quartic casimir from a family of quartic casimirs related by Lie
algebra has to be evaluated directly. For the classical groups, this is a straightfor-
ward application of the birdtrack reduction algorithms. For example, forSU(n) we
worked this out in section2.2.

The results for the defining and adjoint reps of all simple Liegroups are listed in
table7.3. In table7.4 we have used the results of table7.3 to compute the quartic
Dynkin indices (7.33). These computations were carried out by the methods that
will be developed in the remainder of this monograph.

7.8 SUNDRY RELATIONS BETWEEN QUARTIC CASIMIRS

In evaluations of group theory weights, the following reduction of a 2-adjoint, 2-
defining indices quartic casimir is often very convenient:

= A +B , (7.50)

where the constantsA andB are listed in table7.5.
For the exceptional groups, the calculation of quartic casimirs is very simple. As

mentioned above, the exceptional groups have no genuine quartic casimirs, as

trX4=b(trX2)2

=b . (7.51)
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The constant is fixed by contracting with :
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Hence, for the exceptional groups
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, (7.52)

1

N
=C4

A

25

12(N + 2)
, (7.53)

1

N
=C4

A

N + 27

12(N + 2)
. (7.54)

Here the third relation follows from the second by the Lie algebra.
To facilitate such computations, we list a selection of relations between various

quartic casimirs (using normalization ��
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= a ) for irreducible reps
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=
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a2 . (7.56)

The cubic casimir ������������ is nonvanishing only forSU(n), n ≥ 3.
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N 1
a

1
a

SU(n) n2 − 1 2n − 1
n −a2

SO(n) n(n−1)
2 (n− 2) 1

2 −a2

2 +a

Sp(n) n(n+1)
2 (n+ 2) 1

2 −a2

2 −a

G2(7) 14 4 0 −a2

3 +a
3

F4(26) 52 3 1
2 −a2

12 +a
3

E6(27) 78 4 8
9 −a2

9 +a

E7(56) 133 3 7
8 −a2

24 + 5a
6

Table 7.5 The dimensionN of the adjoint rep, the quadratic casimir of the adjoint rep1/ℓ,
the vertex casimirCv and the quartic casimir (7.50) for the defining rep of all
simple Lie algebras.
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Ar
31 2

…
−1n n

SU(n+ 1)

Br
31 2

… ����

n−1 n
SO(2n+ 1)

Cr ���� ��������

31 2
…

n
����

−1 n
Sp(2n)

Dr
31 2

…
−1

n

n
n

−2 SO(2n)

G2 ����

1 2

F4 ���� ����

41 2 3

E6

6

1 2 3 4 5

E7
61 2 3 4 5

7

E8
1 2 3 4 5 6 7

8

Table 7.6 Dynkin diagrams for the simple Lie groups.

1

a2N

��
��
��

��
��
��

=
1

3a
(2CF + CV ) =

N

n
− CA

6a
(7.59)

1

N
=

5

6
C2

A (7.60)

1

a3N

��
��
��

��
��
��

=
1

3
(C2

F + CFCV + C2
V ) . (7.61)

7.9 DYNKIN LABELS

“Why are they called Dynkin diagrams?"

H. S. M. Coxeter [67]

It is standard to identify a rep of a simple group of rankr by its Dynkin labels,
a set ofr integers(a1a2 . . . ar) assigned to the simple roots of the group by the
Dynkin diagrams. The Dynkin diagrams (table7.6) are the most concise summary
of the Cartan-Killing construction of semisimple Lie algebras. We list them here
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only to facilitate the identification of the reps and do not attempt to derive or explain
them. In this monograph, we emphasize the tensorial techniques for constructing
irreps. Dynkin’s canonical construction is described in refs. [313, 126]. However,
in order to help the reader connect the two approaches, we will state the correspon-
dence between the tensor reps (identified by the Young tableaux) and the canonical
reps (identified by the Dynkin labels) for each group separately, in the appropriate
chapters.
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Chapter Eight

Group integrals

In this chapter we discuss evaluation of group integrals of form∫
dg Ga

bGc
d . . . Ge

fG
g
h , (8.1)

whereGa
b is a [n×n] defining matrix rep ofg ∈ G, G† is the matrix rep of the

action ofg on the conjugate vector space, which we write as in (3.12),

Ga
b = (G†)b

a ,

and the integration is over the entire range ofg. As always, we assume thatG is
a compact Lie group, andGa

b is unitary. Such integrals are of import for certain
quantum field theory calculations, and the chapter should probably be skipped by
a reader not interested in such applications. The integral (8.1) is defined by two
requirements:
1. Normalization: ∫

dg = 1 . (8.2)

2. The action ofg ∈ G is to rotate a vectorxa into x′
a = Ga

bxb:

Surface traced out by action of G
for all possible group elements

G

x
x’

The averaging smearsx in all directions, hence the second integration rule,∫
dg Ga

b = 0 , G is anontrivial rep ofg , (8.3)

simply states that the average of a vector is zero.
A rep is trivial if G = 1 for all group elementsg. In this case no averaging is

taking place, and the first integration rule (8.2) applies.
What happens if we average a pair of vectorsx, y? There is no reason why a pair

should average to zero; for example, we know that|x|2 =
∑

a xax
∗
a = xax

a is
invariant, so it cannot have a vanishing average. Therefore, in general,∫

dg Ga
bGc

d 6= 0 . (8.4)
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8.1 GROUP INTEGRALS FOR ARBITRARY REPS

To get a feeling of what the right-hand side of (8.4) looks like, let us work out an
SU(n) example.

LetGa
b be the defining[n×n]matrix rep ofSU(n). The defining rep is nontrivial,

so it averages to zero by (8.3). The first nonvanishing average involvesG†, the matrix
rep of the action ofg on the conjugate vector space. As we shall soon have to face
a lot of indices, we immediately resort to birdtracks. In thebirdtracks notation of
section4.1,

Ga
b =

��
��
��
��

��
��
��
��a b , Ga

b = ��
��
��
��

��
��
��
��a b . (8.5)

ForG the arrows and the triangle point the same way, while forG† they point the
opposite way. UnitarityG†G = 1 is given by

��
��
��
��

��
��
��
��

��
��
��
�� =

��
��
��
��

��
��
��
��

��
��
��
�� =

��
��
��

��
��
�� . (8.6)

In this notation, theGG† integral to be evaluated is
∫

dg
��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

c

d

b

a
. (8.7)

As in theSU(n) example of section2.2, theV ⊗ V tensors decompose into the
singlet and the adjoint rep

��
��
��
��

��
��
��
��

= 1
n ������������ + ������������

δdaδ
b
c = 1

nδ
b
aδ

d
c + 1

a (Ti)
b
a (Ti)

d
c .

(8.8)

We multiply (8.7) with the above decomposition of the identity. The unitarity relation
(8.7) eliminates G’s from the singlet:

��
��
��
��

��
��
��
��

=
1

n
������������ + ���

���
���
���

���
���
���
��� . (8.9)

The generatorsTi are invariant (see (4.47)):

(Ti)
a
b = Ga

a′Gb
b′Gii′ (Ti′)

a′

b′ , (8.10)

whereGij is the adjoint[N×N ] matrix rep ofg ∈ G. Multiplying by (G−1)ij , we
obtain

= . (8.11)

Hence, the pairGG† in the defining rep can be traded in for a singleG in the adjoint
rep,

=
1

n
+ . (8.12)

The adjoint repGij is nontrivial, so it gets averaged to zero by (8.3). Only the singlet
survives: ∫

dg Ga
dGb

c=
1

d
δdc δ

b
a

∫
dg =

1

d
. (8.13)
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Now let G be any[d×d] irrep of a compact semisimple Lie group. Irreducibility
means that any[d× d] invariant tensorAa

b is proportional toδab (otherwise one
could useA to construct projection operators of section3.5 and decompose the
d-dimensional rep). As the only bilinear invariant isδab , the Clebsch-Gordan

=
1

d
+

nonsinglets∑

λ

λ (8.14)

series contains one and only one singlet. Only the singlet survives the group av-
eraging, and (8.13) is true for any[d× d] irreducible rep (with n → d). If we
takeG(µ)

α
β andG(λ)

d
c in inequivalent repsλ, µ (there is no matrixK such that

G(λ) = KG(µ)K−1 for all g ∈ G), then there is no way of forming a singlet, and
∫

dg G(λ)
a
dG(µ)

β
α = 0 if λ 6= µ . (8.15)

What happens ifG is a reducible rep? In the compact index notation of section3.2,
the group integral (8.1) that we want to evaluate is given by

∫
dg Gα

β . (8.16)

A reducible rep can be expanded in a Clebsch-Gordan series (3.60)
∫

dg G =
∑

λ

C†
λ

∫
dg GλCλ . (8.17)

By the second integration rule (8.3), all nonsinglet reps average to zero, and one is
left with a sum over singlet projection operators:

∫
dg G =

∑

singlets

C†
λCλ =

∑

singlets

Pλ . (8.18)

Group integration amounts to projecting out all singlets ina given Kronecker prod-
uct. We now flesh out the logic that led to (8.18) with a few details. For concreteness,
consider the Clebsch-Gordan series (5.8) for µ× ν =

∑
λ. Each clebsch

(Cλ)ac
i =

��
��
��
��

��
��
��
�� λ

��
��
��
��

a

c
i (8.19)

is an invariant tensor (see (4.39)):

Cac
i=Ga

a′

Gc
c′Gi

i′Ca′c′
i′

λ

ν

µ
=

µ λ

ν
. (8.20)

Multiplying with G(λ) from right, we obtain the rule for the “propagation” ofg
through the “vertex”C:

λµ

ν
=

µ λ

ν

Cac
i′Gi′

i=Ga
a′

Gc
c′Ca′c′

i . (8.21)



GroupTheory version 9.0.1, April 8, 2011

GROUP INTEGRALS 81

In this way,G(µ)G(ν) can be written as a Clebsch-Gordan series, each term with a
single matrixG(λ) (see (5.8)):

∫
dg

µ

ν =

∫
dg
∑

λ

dλ

λ
ν

µ ν

µ
λ

=
∑

λ

(Cλ)ab
i(Cλ)j

cd

∫
dg G(λ)

i
j . (8.22)

Clebsches are invariant tensors, so they are untouched by group integration. Integral
overG(µ)G(ν) reduces to clebsches times integrals:∫

dg G(λ)
i
j =

{
1 for λ singlet
0 for λ nonsinglet

. (8.23)

Nontrivial reps average to zero, yielding (8.18). We have gone into considerable
detail in deriving (8.22) in order to motivate the sum-over-the-singlets projection
operators rule (8.18). Clebsches were used in the above derivations for purely ped-
agogical reasons; all that is actually needed are the singlet projection operators.

8.2 CHARACTERS

Physics calculations (such as lattice gauge theories) often involve group-invariant
quantities formed by contractingG with invariant tensors. Such invariants are of the
form tr(hG) = hb

aGa
b, whereh stands for any invariant tensor. The trace of an

irreducible[d×d] matrix repλ of g is called thecharacterof the rep:
χλ(g) = trG(λ) = G(λ)

a
a . (8.24)

The character of the conjugate rep is
χλ(g) = trG(λ)† = G(λ)a

a = χλ(g)
∗ . (8.25)

Contracting (8.14) with two arbitrary invariant[d×d] tensorshd
a and(f †)b

c, we
obtain thecharacter orthonormality relation:∫

dg χλ(hg)χ
µ(gf)=δµλ

1

dλ
χλ(hf

†) (8.26)

∫
dg

λ

µ

h

f

=
1

dλ λ

f

h (
λ, µ irreducible
reps

)
.

The character orthonormality tells us that if two group-invariant quantities share a
GG† pair, the group averaging sews them into a single group-invariantquantity. The
replacement ofGa

b by the characterχλ(h
†g) does not mean that any of the tensor

index structure is lost;Ga
b can be recovered by differentiating

Ga
b =

d

dhb
a
χλ(h

†g) . (8.27)

The birdtracks and the characters are two equivalent notations for evaluating group
integrals.
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8.3 EXAMPLES OF GROUP INTEGRALS

We will illustrate (8.18) by two examples:SU(n) integrals overGG andGGG†G†.
A product of twoG’s is drawn as

Ga
bGc

d =
a b

dc
. (8.28)

G’s are acting on⊗V 2 tensor space, which is decomposable by (9.4) into the sym-
metric and the antisymmetric subspace

δbaδ
d
c =(Ps)ac ,

db +(PA)ac ,
db

=
��
��
��
��

��
��
��
��

���
���
���

���
���
���

S��
��
��

��
��
��

���
���
���

���
���
���

+
��
��
��
��

��
��
��
��

���
���
���

���
���
���

A��
��
��

��
��
��

���
���
���

���
���
���
, (8.29)

(Ps)ac ,
db=

1

2

(
δbaδ

d
c + δdaδ

b
c

)

��
��
��
��

��
��
��
��

���
���
���

���
���
���

S��
��
��

��
��
��

���
���
���

���
���
���
=

1

2

{
+

}
(8.30)

(PA)ac ,
db=

1

2

(
δbaδ

d
c + δdaδ

b
c

)

��
��
��
��

��
��
��
��

���
���
���

���
���
���

A��
��
��

��
��
��

���
���
���

���
���
���
=

1

2

{
−

}

ds=
n(n+ 1)

2
, dA =

n(n− 1)

2
. (8.31)

The transposition of indicesb andd is explained in section4.1; it ensures a simple
correspondence between tensors and birdtracks.

ForSU(2) the antisymmetric subspace has dimensiondA = 1. We shall return
to this case in section15.1. Forn ≥ 3, both subspaces are nonsinglets, and by the
second integration rule,

SU(n) :

∫
dg Ga

bGc
d = 0 , n > 2 . (8.32)

As the second example, consider the group integral overGGG†G†. This rep

acts onV 2 ⊗ V
2

tensor space. There are various ways of constructing the singlet
projectors; we shall give two.

We can treat theV 2⊗V
2

space as a Kronecker product of spaces⊗V 2 and⊗V
2
.

We first reduce the particle and antiparticle spaces separately by (8.29):

= + + + . (8.33)

The only invariant tensors that can project singlets out of this space (forn ≥ 3) are
index contraction with no intermediate lines:

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
������

���
���
���

����
����
����

����
����
���� ���

���
���
���
. (8.34)



GroupTheory version 9.0.1, April 8, 2011

GROUP INTEGRALS 83

Contracted with the last two reps in (8.33), they yield zero. Only the first two reps
yield singlets

a
gb

c
d

h

e
f ⇒ 2

n(n+ 1)
+

2

n(n− 1) �������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
������� . (8.35)

The projector normalization factors are the dimensions of the associated reps (3.24).
TheGGG†G† group integral written out in tensor notation is

∫
dg Ga

hG
b
gGc

fGd
e=

1

2n(n+ 1)

(
δadδ

b
c + δac δ

b
d

) (
δehδ

f
g + δegδ

f
h

)

+
1

2n(n− 1)

(
δadδ

b
c − δac δ

b
d

) (
δehδ

f
g − δegδ

f
h

)
.(8.36)

We have obtained this result by first reducing⊗V 2 and⊗V
2
. What happens if we

reduceV 2⊗V
2

as(V ⊗V )2 ? We first decompose the twoV ⊗V tensor subspaces
into singlets and adjoint reps (see section2.2):

=
1

n2
+ +

1

n
+

1

n
. (8.37)

The two cross terms with one intermediate adjoint line cannot be reduced further. The
2-index adjoint intermediate state contains only one singlet in the Clebsch-Gordan
series (15.25), so that the final result [69] is

=
1

n2
+

1

n2 − 1
. (8.38)

By substituting adjoint rep projection operators (9.54), one can check that this is the
same combination of Kronecker deltas as (8.36).

To summarize, the projection operators constructed in thismonograph are all that
is needed for evaluation of group integrals; the group integral for an arbitrary rep is
given by the sum over all singlets (8.18) contained in the rep.
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Chapter Nine

Unitary groups

P. Cvitanović, H. Elvang, and A. D. Kennedy

U(n) is the group of all transformations that leave invariant thenormqq = δab q
bqa

of a complex vectorq. ForU(n) there are no other invariant tensors beyond those
constructed of products of Kronecker deltas. They can be used to decompose the
tensor reps ofU(n). For purely covariant or contravariant tensors, the symmetric
group can be used to construct the Young projection operators. In sections.9.1–9.2
we show how to do this for 2- and 3-index tensors by constructing the appropriate
characteristic equations.

For tensors with more indices it is easier to construct the Young projection opera-
tors directly from the Young tableaux. In section9.3we review the Young tableaux,
and in section9.4we show how to construct Young projection operators for tensors
with any number of indices. As examples, 3- and 4-index tensors are decomposed
in section9.5. We use the projection operators to evaluate3n-j coefficients and
characters ofU(n) in sections.9.6–9.9, and we derive new sum rules forU(n) 3-j
and 6-j symbols in section9.7. In section9.8we consider the consequences of the
Levi-Civita tensor being an extra invariant forSU(n).

For mixed tensors the reduction also involves index contractions and the sym-
metric group methods alone do not suffice. In sections.9.10–9.12the mixedSU(n)
tensors are decomposed by the projection operator techniques introduced in chap-
ter3.SU(2),SU(3),SU(4), andSU(n) are discussed from the “invariance group"
perspective in chapter15.

9.1 TWO-INDEX TENSORS

Consider 2-index tensorsq(1) ⊗ q(2) ∈ ⊗V 2. According to (6.1), all permutations
are represented by invariant matrices. Here there are only two permutations, the
identity and the flip (6.2),

σ = .

The flip satisfies

σ2 = =1 ,

(σ + 1)(σ − 1)=0 . (9.1)
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The eigenvalues areλ1 = 1, λ2 = −1, and the corresponding projection operators
(3.48) are

P1=
σ − (−1)1

1− (−1)
=

1

2
(1+ σ) =

1

2

{
+

}
, (9.2)

P2=
σ − 1

−1− 1
=

1

2
(1− σ) =

1

2

{
−

}
. (9.3)

We recognize the symmetrization, antisymmetrization operators (6.4), (6.15);P1 =
S,P2 = A, with subspace dimensionsd1 = n(n+1)/2, d2 = n(n−1)/2. In other
words, under general linear transformations the symmetricand the antisymmetric
parts of a tensorxab transform separately:

x=Sx+Ax ,

xab=
1

2
(xab + xba) +

1

2
(xab − xba)

= + . (9.4)

The Dynkin indices for the two reps follow by (7.29) from 6j′s:

=
1

2
(0) +

1

2
=

N

2

ℓ1=
2ℓ

n
· d1 +

2ℓ

N
· N
2

= ℓ(n+ 2) . (9.5)

Substituting the defining rep Dynkin indexℓ−1 = CA = 2n, computed in sec-
tion 2.2, we obtain the two Dynkin indices

ℓ1 =
n+ 2

2n
, ℓ2 =

n− 2

2n
. (9.6)

9.2 THREE-INDEX TENSORS

Three-index tensors can be reduced to irreducible subspaces by adding the third
index to each of the 2-index subspaces, the symmetric and theantisymmetric. The
results of this section are summarized in figure9.1and table9.1. We mix the third
index into the symmetric 2-index subspace using the invariant matrix

Q = S12σ(23)S12 =

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

. (9.7)

Here projection operatorsS12 ensure the restriction to the 2-index symmetric sub-
space, and the transpositionσ(23) mixes in the third index. To find the characteristic
equation forQ, we computeQ2:

Q2=S12σ(23)S12σ(23)S12 =
1

2

{
S12 + S12σ(23)S12

}
=

1

2
S12 +

1

2
Q

= =
1

2

{
+

}
.
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Hence,Q satisfies

(Q− 1)(Q+ 1/2)S12 = 0 , (9.8)

and the corresponding projection operators (3.48) are

P1 =
Q+ 1

21

1 + 1
2

S12=
1

3

{
σ(23) + σ(123) + 1

}
S12 = S

=
1

3

{
+ +

}
= (9.9)

P2 =
Q− 1

− 1
2 − 1

S12=
4

3
S12A23S12 =

4

3
. (9.10)

Hence, the symmetric 2-index subspace combines with the third index into a sym-
metric 3-index subspace (6.13) and a mixed symmetry subspace with dimensions

d1=trP1 = n(n+ 1)(n+ 2)/3! (9.11)

d2=trP2 =
4

3
= n(n2 − 1)/3 . (9.12)

The antisymmetric 2-index subspace can be treated in the same way using the
invariant matrix

Q = A12σ(23)A12 = . (9.13)

The resulting projection operators for the antisymmetric and mixed symmetry 3-
index tensors are given in figure9.1. Symmetries of the subspace are indicated by
the corresponding Young tableaux, table9.2. For example, we have just constructed

21 ⊗ 3 = 1 32 ⊕ 2
3
1

= +
4

3

n2(n+ 1)

2
=

n(n+ 1)(n+ 2)

3!
+

n(n2 − 1)

3
. (9.14)

The projection operators for tensors with up to 4 indices areshown in figure9.1,
and in figure9.2the corresponding stepwise reduction of the irreps is givenin terms
of Young standard tableaux (defined in section9.3.1).

9.3 YOUNG TABLEAUX

We have seen in the examples of sections.9.1–9.2that the projection operators for
2-index and 3-index tensors can be constructed using characteristic equations. For
tensors with more than three indices this method is cumbersome, and it is much
simpler to construct the projection operators directly from the Young tableaux. In
this section we review the Young tableaux and some aspects ofsymmetric group
representations that will be important for our construction of the projection operators
in section9.4.
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!n
!4 (n−4 !)

(n2 )1− n(n 2)
8

−

(n2 )1−n2

12

(n2 )1− n(n+2)
8

3
2

1−

2

3
2

4

2

3
2

3
4

3
4

3

n(n+1)
2

n(n
2

)1−

3!
n+2n(

n

)(n+1 )

n(n2 )1−
3

( )n 1−n (n 2)
3!

−

dimension

3
4

3
2

(n+3 !)
!4 !( )n

AAS

S

S A

A

SSSA A

S

SA

A

S A

Figure 9.1 Projection operators for 2-, 3-, and 4-index tensors inU(n), SU(n), n ≥ p =
number of indices.
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3 2

1
2

31 2

31 4 1 32 2
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2 2
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−
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1
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1
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n1
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A

S

S
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A

Figure 9.2 Young tableaux for the irreps of the symmetric group for 2-, 3-, and 4-index
tensors. Rows correspond to symmetrizations, columns to antisymmetrizations.
The reduction procedure is not unique, as it depends on the order in which the
indices are combined; this order is indicated by labels 1, 2,3 , ...,p in the boxes
of Young tableaux.
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9.3.1 Definitions

Partitionk identical boxes intoD subsets, and letλm, m = 1, 2, . . . , D, be the
number of boxes in the subsets ordered so thatλ1 ≥ λ2 ≥ . . . ≥ λD ≥ 1. Then
the partitionλ = [λ1, λ2, . . . , λD] fulfills

∑D
m=1 λm = k. The diagram obtained

by drawing theD rows of boxes on top of each other, left aligned, starting with λ1

at the top, is called aYoung diagramY .

Examples:
The ordered partitions fork = 4 are [4], [3, 1], [2, 2], [2, 1, 1] and [1, 1, 1, 1]. The
corresponding Young diagrams are

.

Inserting a number from the set{1, . . . , n} into every box of a Young diagram
Yλ in such a way that numbers increase when reading a column fromtop to bottom,
and numbers do not decrease when reading a row from left to right, yields aYoung
tableauYa. The subscripta labels different tableaux derived from a given Young
diagram,i.e., different admissible ways of inserting the numbers into the boxes.

A standard tableauis ak-box Young tableau constructed by inserting the numbers
1, . . . , k according to the above rules, but using each number exactly once. For
example, the 4-box Young diagram with partitionλ = [2, 1, 1] yields three distinct
standard tableaux:

1

4

2
3 ,

1
2
4

3
,

1

3

4
2 . (9.15)

An alternative labeling of a Young diagram are Dynkin labels, the list of num-
bers bm of columns withm boxes:(b1b2 . . .). Having k boxes we must have∑k

m=1 mbm = k. For example, the partition[4, 2, 1] and the labels(21100 · · ·)
give rise to the same Young diagram, and so do the partition[2, 2] and the labels
(020 · · ·).

We define thetransposediagramYt as the Young diagram obtained from Y by
interchanging rows and columns. For example, the transposeof [3, 1] is [2, 1, 1],

1 42
3

t

=
1
2
4

3
,

or, in terms of Dynkin labels, the transpose of(210 . . .) is (1010 . . .).
The Young tableaux are useful for labeling irreps of variousgroups. We shall use

the following facts (see for instance ref. [153]):

1. Thek-boxYoung diagramslabel all irreps of the symmetric groupSk.

2. Thestandard tableauxof k-box Young diagrams with no more thann rows
label the irreps ofGL(n), in particular they label the irreps ofU(n).
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3. Thestandard tableauxof k-box Young diagrams with no more thann − 1
rows label the irreps ofSL(n), in particular they label the irreps ofSU(n).

In this section, we consider the Young tableaux for reps ofSk andU(n), while the
case ofSU(n) is postponed to section9.8.

9.3.2 Symmetric groupSk

The irreps of the symmetric groupSk are labeled by thek-box Young diagrams. For
a given Young diagram, the basis vectors of the corresponding irrep can be labeled
by the standard tableaux of Y; consequently the dimension∆Y of the irrep is the
number of standard tableaux that can be constructed from theYoung diagram Y.
The example (9.15) shows that the irrepλ = [2, 1, 1] of S4 is 3-dimensional.

As an alternative to counting standard tableaux, the dimension∆Y of the irrep of
Sk corresponding to the Young diagram Y can be computed easily as

∆Y =
k!

|Y| , (9.16)

where the number|Y| is computed using a “hook” rule: Enter into each box of the
Young diagram the number of boxes below and to the right of thebox, including the
box itself. Then|Y| is the product of the numbers in all the boxes. For instance,

Y = −→ |Y| =
6 15 3

34
2 1

1 = 6! 3 . (9.17)

The hook rule (9.16) was first proven by Frame, de B. Robinson, and Thrall [123].
Various proofs can be found in the literature [296, 170, 133, 142, 21]; see also Sagan
[303] and references therein.

We now discuss the regular representation of the symmetric group. The elements
σ ∈ Sk of the symmetric groupSk form a basis of ak!-dimensional vector spaceV
of elements

s =
∑

σ∈Sk

sσ σ ∈ V , (9.18)

wheresσ are the components of a vectors in thegivenbasis. Ifs ∈ V has components
(sσ) andτ ∈ Sk, thenτs is an element inV with components(τs)σ = sτ−1σ. This
action of the group elements on the vector spaceV defines ank!-dimensional matrix
representation of the groupSk, theregular representation.

The regular representation is reducible, and each irrepλ appears∆λ times in the
reduction;∆λ is the dimension of the subspaceVλ corresponding to the irrepλ. This
gives the well-known relation between the order of the symmetric group|Sk| = k!
(the dimension of the regular representation) and the dimensions of the irreps,

|Sk| =
∑

all irreps λ

∆2
λ .

Using (9.16) and the fact that the Young diagrams label the irreps ofSk, we have

1 = k!
∑

(k)

1

|Y |2 , (9.19)
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where the sum is over all Young diagrams withk boxes. We shall use this relation
to determine the normalization of Young projection operators in appendixB.3.

The reduction of the regular representation ofSk gives a completeness relation,

1 =
∑

(k)

PY ,

in terms of projection operators

PY =
∑

Ya∈Y

PYa
.

The sum is over all standard tableaux derived from the Young diagram Y. EachPYa

projects onto a corresponding invariant subspaceVYa
: for each Y there are∆Y such

projection operators (corresponding to the∆Y possible standard tableaux of the
diagram), and each of these project onto one of the∆Y invariant subspacesVY of
the reduction of the regular representation. It follows that the projection operators
are orthogonal and that they constitute a complete set.

9.3.3 Unitary groupU(n)

The irreps ofU(n) are labeled by thek-box Young standard tableaux with no more
thann rows. A k-index tensor is represented by a Young diagram withk boxes
— one typically thinks of this as ak-particle state. ForU(n), a 1-index tensor has
n-components, so there aren 1-particle states available, and this corresponds to the
n-dimensional fundamental rep labeled by a 1-box Young diagram. There aren2

2-particle states forU(n), and as we have seen in section9.1 these split into two
irreps: the symmetric and the antisymmetric. Using Young diagrams, we write the
reduction of the 2-particle system as

⊗ = ⊕ . (9.20)

Except for the fully symmetric and the fully antisymmetric irreps, the irreps of the
k-index tensors ofU(n)have mixed symmetry. Boxes in a row correspond to indices
that are symmetric under interchanges (symmetric multiparticle states), and boxes
in a column correspond to indices antisymmetric under interchanges (antisymmetric
multiparticle states). Since there are onlyn labels for the particles, no more than
n particles can be antisymmetrized, and hence only standard tableaux with up ton
rows correspond to irreps ofU(n).

The number of standard tableaux∆Y derived from a Young diagram Y is given in
(9.16). In terms of irreducible tensors, the Young diagram determines the symmetries
of the indices, and the∆Y distinct standard tableaux correspond to the independent
ways of combining the indices under these symmetries. This is illustrated in fig-
ure9.2.

For a givenU(n) irrep labeled by some standard tableau of the Young diagram
Y, the basis vectors are labeled by the Young tableauxYa obtained by inserting
the numbers1, 2, . . . , n into Y in the manner described in section9.3.1. Thus the
dimension of an irrep ofU(n) equals the number of such Young tableaux, and we
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note that all irreps with the same Young diagram have the samedimension. For
U(2), thek = 2 Young tableaux of the symmetric and antisymmetric irreps are

11 , 21 , 22 , and 1
2
,

so the symmetric state ofU(2) is 3-dimensional and the antisymmetric state is 1-
dimensional, in agreement with the formulas (6.4) and (6.15) for the dimensions of
the symmetry operators. ForU(3), the counting of Young tableaux shows that the
symmetric 2-particle irrep is 6-dimensional and the antisymmetric 2-particle irrep
is 3-dimensional, again in agreement with (6.4) and (6.15). In section9.4.3we state
and prove a dimension formula for a general irrep ofU(n).

9.4 YOUNG PROJECTION OPERATORS

Given an irrep ofU(n) labeled by ak-box standard tableaux Y, we construct the cor-
responding Young projection operatorPY in birdtrack notation by identifying each
box in the diagram with a directed line. The operatorPY is a block of symmetrizers
to the left of a block of antisymmetrizers, all imposed on thek lines. The blocks of
symmetry operators are dictated by the Youngdiagram, whereas the attachment of
lines to these operators is specified by the particular standard tableau.

The Kronecker delta is invariant under unitary transformations: forU ∈ U(n),
we have(U †)a

a′

δb
′

a′U b′
b = δba. Consequently, any combination of Kronecker deltas,

such as a symmetrizer, is invariant under unitary transformations. The symmetry op-
erators constitute a complete set, so anyU(n) invariant tensor built from Kronecker
deltas can be expressed in terms of symmetrizers and antisymmetrizers. In particu-
lar, the invariance of the Kronecker delta underU(n) transformations implies that
the same symmetry group operators that project the irreps ofSk also yield the irreps
of U(n).

The simplest examples of Young projection operators are those associated with
the Young tableaux consisting of either one row or one column. The corresponding
Young projection operators are simply the symmetrizers or the antisymmetrizers
respectively. As projection operators forSk, the symmetrizer projects onto the 1-
dimensional subspace corresponding to the fully symmetricrepresentation, and the
antisymmetrizer projects onto the fully antisymmetric representation (the alternating
representation).

A Young projection operator for a mixed symmetry Young tableau will here be
constructed by first antisymmetrizing subsets of indices, and then symmetrizing
other subsets of indices; the Young tableau determines which subsets, as will be
explained shortly. Schematically,

PYa
= αY , (9.21)

where the white (black) blob symbolizes a set of (anti)symmetrizers. The nor-
malization constantαY (defined below) ensures that the operators are idempotent,
PYa

PYb
= δabPYa

.
This particular form of projection operators is not unique:in section9.2we built

3-index tensor Young projection operators that were symmetric under transposition.
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The Young projection operators constructed in this sectionare particularly conve-
nient for explicitU(n) computations, and another virtue is that we can write down
the projectors explicitly from the standard tableaux, without having to solve a char-
acteristic equation. For multiparticle irreps, the Young projection operators of this
section will generally be different from the ones constructed from characteristic
equations (see sections.9.1–9.2); however, the operators are equivalent, since the
difference amounts to a choice of basis.

9.4.1 Construction of projection operators

LetYa be ak-box standard tableau. Arrange a set of symmetrizers corresponding to
the rows inYa, and to the right of this arrange a set of antisymmetrizers correspond-
ing to the columns inYa. For a Young diagram Y withs rows andt columns we label
the rows S1, S2, …, Ss and to the columns A1, A2, …, At. Each symmetry operator
in PY is associated to a row/column in Y, hence we label a symmetry operator after
the corresponding row/column, for example,

......

1 2 3 4 5

6 7 8 9

10 11

S1

S2

S3

AA AAA 1 2 3 4 5

= αY

5A

2S

S3

A 4

S
A

1

2

A

A

3

1

. (9.22)

Let the lines numbered 1 tok enter the symmetrizers as described by the numbers
in the boxes in the standard tableau and connect the set of symmetrizers to the set
of antisymmetrizers in a nonvanishing way, avoiding multiple intermediate lines
prohibited by (6.17). Finally, arrange the lines coming out of the antisymmetrizers
such that if the lines all passed straight through the symmetry operators, they would
exit in the same order as they entered. This ensures that uponexpansion of all the
symmetry operators, the identity appears exactly once.

We denote by|Si| or |Ai| the lengthof a row or column, respectively, that is the
number of boxes it contains. Thus|Ai| also denotes the number of lines entering
the antisymmetrizer Ai. In the above example we have|S1| = 5, |A2| = 3, etc.

The normalizationαY is given by

αY =

(∏s
i=1 |Si|!

)(∏t
j=1 |Aj |!

)

|Y| , (9.23)

where|Y| is related through (9.16) to ∆Y, the dimension of irrep Y ofSk, and is a
hook ruleSk combinatoric number. The normalization depends only on theshape
of the Young diagram, not the particular tableau.

Example:The Young diagram tells us to use one symmetrizer of length
three, one of length one, one antisymmetrizer of length two,and two of length one.
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There are three distinctk-standard arrangements,each corresponding to a projection
operator

4
1 2 3 =αY (9.24)

3
1 42 =αY (9.25)

2
1 3 4 =αY , (9.26)

where the normalization constant isαY = 3/2 by (9.23). More examples of Young
projection operators are given in section9.5.

9.4.2 Properties

We prove in appendixB that the above construction yields well defined projection
operators. In particular, the internal connection betweenthe symmetrizers and an-
tisymmetrizers is unique up to an overall sign (proof in appendix B.1). We fix the
overall sign by requiring that when all symmetry operators are expanded, the iden-
tity appears with a positive coefficient. Note that by construction (the lines exit in
the same order as they enter) the identity appears exactly once in the full expansion
of any of the Young projection operators.

We list here the most important properties of the Young projection operators:

1. The Young projection operators areorthogonal: If Y and Z are two distinct
standard tableaux, thenPYPZ = 0 = PZPY.

2. With the normalization (9.23), the Young projection operators are indeed
projection operators, i.e., they are idempotent:P2

Y = PY.

3. For a givenk the Young projection operators constitute a complete set such
that1 =

∑
PY, where the sum is over all standard tableaux Y withk boxes.

The proofs of these properties are given in appendixB.

9.4.3 Dimensions ofU(n) irreps

The dimensiondY of a U(n) irrep Y can be computed diagrammatically as the
trace of the corresponding Young projection operator,dY = trPY. Expanding
the symmetry operators yields a weighted sum of closed-loopdiagrams. Each loop
is worth n, and since the identity appears precisely once in the expansion, the
dimensiondY of a irrep with ak-box Young tableau Y is a degreek polynomial in
n.

Example:We compute we dimension of theU(n) irrep 2
3
1 :

dY= 1
3

2 =
4

3
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=
4

3

(
1

2!

)2
{

+

− −
}

=
1

3
(n3 + n2 − n2 − n) =

n(n2 − 1)

3
. (9.27)

In practice, this is unnecessarily laborious. The dimension of aU(n) irrep Y is
given by

dY =
fY(n)

|Y | . (9.28)

HerefY(n) is a polynomial inn obtained from the Young diagram Y by multiplying
the numbers written in the boxes of Y, according to the following rules:

1. The upper left box contains ann.

2. The numbers in a row increase by one when reading from left to right.

3. The numbers in a column decrease by one when reading from top to bottom.

Hence, ifk is the number of boxes in Y,fY(n) is a polynomial inn of degreek.
The dimension formula (9.28) is well known (see for instance ref. [138]).

Example:In the above example with the irrep 2
3
1 , we have

dY =
fY(n)

|Y | =
n(n2 − 1)

3

in agreement with the diagrammatic trace calculation (9.27).

Example:With Y = [4,2,1], we have

fY(n)=
n

n-1

n+1 n+2 n+3

n

n-2

= n2(n2 − 1)(n2 − 4)(n+ 3),

|Y|=
14 2

1
3
6

1 = 144, (9.29)

hence,

dY =
n2(n2 − 1)(n2 − 4)(n+ 3)

144
. (9.30)

UsingdY = trPY, the dimension formula (9.28) can be proven diagrammatically
by induction on the numberofboxes in the irrepY. Theproof isgiven in appendixB.4.
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The polynomialfY(n) has an intuitive interpretation in terms of strand colorings
of the diagram fortrPY. Draw the trace of the Young projection operator. Each
line is a strand, a closed line, which we draw as passing straight through all of the
symmetry operators. For ak-box Young diagram, there arek strands. Given the
following set of rules, we count the number of ways to color thek strands usingn
colors. The top strand (corresponding to the leftmost box inthe first row of Y) may
be colored inn ways. Color the rest of the strands according to the following rules:

1. If a path, which could be colored inm ways, enters an antisymmetrizer, the
lines below it can be colored inm− 1, m− 2, … ways.

2. If a path, which could be colored inm ways, enters a symmetrizer, the lines
below it can be colored inm+ 1, m+ 2, … ways.

Using this coloring algorithm, the number of ways to color the strands of the
diagram isfY(n).

Example:For Y =
6

7
1 2

8
4 5

3
, the strand diagram is

n+2
n

n+1

n+3

n-1

n-2

n

n+1

(9.31)

Each strand is labeled by the number of admissible colorings. Multiplying these
numbers and including the factor1/|Y|, we find

dY=(n− 2) (n− 1)n2 (n+ 1)2 (n+ 2) (n+ 3)�
6 4 3 1

1

124

=
n (n+ 1) (n+ 3)!

26 32 (n− 3)!
,

in agreement with (9.28).

9.5 REDUCTION OF TENSOR PRODUCTS

We now work out several explicit examples of decomposition of direct products of
Young diagrams/tableaux in order to motivate the general rules for decomposition
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Ya PYa
dYa

1 32
n(n+1)(n+2)

6

2
3
1

1
2

3

4
3

4
3





n(n2−1)
3

1
2
3

(n−2)(n−1)n
6

1 ⊗ 2 ⊗ 3 n3

Table 9.1 Reduction of 3-index tensor. The last row shows thedirect sum of the Young
tableaux, the sum of the dimensions of the irreps adding up ton3, and the sum of
the projection operators adding up to the identity as verification of completeness
(3.51).

of direct products stated below, in section9.5.1. We have already treated the decom-
position of the 2-index tensor into the symmetric and the antisymmetric tensors, but
we shall reconsider the 3-index tensor, since the projection operators are different
from those derived from the characteristic equations in section 9.2.

The 3-index tensor reduces to

1 ⊗ 2 ⊗ 3 =

(
21 ⊕ 1

2

)
⊗ 3

= 1 32 ⊕ 2
3
1 ⊕ 1

2
3 ⊕

1
2
3
. (9.32)

The corresponding dimensions and Young projection operators are given in table9.1.
For simplicity, we neglect the arrows on the lines where thisleads to no confusion.

The Young projection operators are orthogonal by inspection.We check complete-
ness by a computation. In the sum of the fully symmetric and the fully antisymmetric
tensors, all the odd permutations cancel, and we are left with

+ =
1

3

{
+ +

}
.

Expanding the two tensors of mixed symmetry, we obtain

4

3

{
+

}
=

2

3
− 1

3
− 1

3
.
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Adding the two equations we get

+
4

3
+

4

3
+ = ,(9.33)

verifying the completeness relation.
For 4-index tensors the decomposition is performed as in the3-index case, result-

ing in table9.2.
Acting with any permutation on the fully symmetric or antisymmetric projection

operators gives±1 times the projection operator (see (6.8) and (6.18)). For projection
operators of mixed symmetry the action of a permutation is not as simple, because
the permutations will mix the spaces corresponding to the distinct tableaux. Here
we shall need only the action of a permutation within a 3n-j symbol, and, as we
shall show below, in this case the result will again be simple, a factor±1 or 0.

9.5.1 Reduction of direct products

We state the rules for general decompositions of direct products such as (9.20) in
terms of Young diagrams:

Draw the two diagrams next to each other and place in each box of the second
diagram anai, i = 1, . . . , k, such that the boxes in the first row all havea1 in them,
second row boxes havea2 in them,etc.The boxes of the second diagram are now
added to the first diagram to create new diagrams according tothe following rules:

1. Each diagram must be a Young diagram.

2. The number of boxes in the new diagram must be equal to the sum of the
number of boxes in the two initial diagrams.

3. For U(n) no diagram has more thann rows.

4. Making a journey through the diagram starting with the toprow and entering
each row from the right, at any point the number ofai’s encountered in any
of the attached boxes must not exceed the number of previously encountered
ai−1’s.

5. The numbers must not increase when reading across a row from left to right.

6. The numbers must decrease when reading a column from top tobottom.

Rules 4–6 ensure that states that were previously symmetrized are not antisym-
metrized in the product, and vice versa. Also, the rules prevent counting the same
state twice.

For example, consider the direct product of the partitions[3] and[2, 1]. ForU(n)
with n ≥ 3 we have

⊗ a1 a1

a2
=

a2

a1a1 ⊕
a2a1

a1 ⊕ a1

a2

a1

⊕ a1

a2

a1 ,

while for n = 2 we have

⊗ a1 a1

a2
=

a2

a1a1 ⊕
a2a1

a1 .
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Ya PYa
dYa

2 3 41
n(n+1)(n+2)(n+3)

24

1
4

2 3

1 42
3

1 4
2

3

3
2

3
2

3
2





(n−1)n(n+1)(n+2)
8

2
4

1
3

1 3
42

4
3

4
3





n2(n2−1)
12

1

4

2
3

1
2
4

3

1

3

4
2

3
2

3
2

3
2





(n−2)(n−1)n(n+1)
8

4

1

3
2 n(n−1)(n−2)(n−3)

24

1 ⊗ 2 ⊗ 3 ⊗ 4 n4

Table 9.2 Reduction of 4-index tensors. Note the symmetry undern ↔ −n.
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As a check that a decomposition is correct, one can compute the dimensions for
the product of irreps on the LHS and the sums of the irreps on the RHS to see that
they match. Methods for calculating the dimension of aU(n) irreps are discussed
in section9.4.3.

9.6 U(n) RECOUPLING RELATIONS

For U(n) (as opposed toSU(n); see section9.8) we have no antiparticles, so in
recoupling relations the total particle number is conserved. Consider as an example
the step-by-step reduction of a 5-particle state in terms ofthe Young projection
operators:

=
∑

X,Z

X

Z =
∑

W,X,Z

X

Z

X

Z
W

=
∑

W,X,Y,Z
W

X

Z
W

Y

X

Z .

More generally, we can visualize any sequence ofU(n) pairwise Clebsch-Gordan
reductions as a flow with lines joining into thicker and thicker projection operators,
always ending in a maximalPY that spans across all lines. In the clebsches notation
of section5.1, this can be redrawn more compactly as

=
∑

X,Z

Z

X

=
∑

W,X,Z
W

Z Z

X

=
∑

W,X,Y,Z

X X

Z
W

Y

W
Z .

The trace of each term in the final sum of the 5-particle state is a 12-j symbol of
the form

X

W

Z

X

W

Z

Y

. (9.34)

In the trace (9.34) we can use the idempotency of the projection operators to double
the maximal Young projection operatorPY, and sandwich by it all smaller projection
operators:

WW
YY

X

Z . (9.35)

From uniqueness of connection between the symmetry operators (see appendixB.1),
we have for any permutationσ ∈ Sk:

... ...Y Yσk = mσ ...... Yk , (9.36)



GroupTheory version 9.0.1, April 8, 2011

UNITARY GROUPS 101

wheremσ = 0,±1. Expressions such as (9.35) can be evaluated by expanding the
projection operatorsPW, PX, PZ and determining the value ofmσ of (9.36) for
each permutationσ of the expansion. The result is

WW
YY

X

Z = M(Y;W,X,Z) Y , (9.37)

where the factorM(Y;W,X,Z)does not dependonn and is determined by a purely
symmetric group calculation. Examples follow.

9.7 U(n) 3n-j SYMBOLS

In this section, we constructU(n) 3-j and 6-j symbols using the Young projection
operators, and we give explicit examples of their evaluation. Sum rules for 3-j’s and
6-j’s are derived in section9.7.3.

9.7.1 3-j symbols

Let X, Y, and Z be irreps ofU(n). In terms of the Young projection operatorsPX,
PY, andPZ, aU(n) 3-vertex (5.4) is obtained by tying together the three Young
projection operators,

X

Z

Y
=

...
...

k

k

k

X

Z

Y Y

Z

X

. (9.38)

Since there are no antiparticles, the construction requireskX + kZ = kY.
A 3-j coefficient constructed from the vertex (9.38) is then

Y

X

Z

=

......

... ...

X

Z

Y . (9.39)

As an example, take

X = 1
3

2 , Y = 2
5 6

1 4
3

, and Z = 5
6
4 .

Then

Y

X

Z

=
4

3
· 2 · 4

3
= M · dY , (9.40)
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whereM = 1 here. Below we derive thatdY (the dimension of the irrep Y) is indeed
the value of this 3-j symbol.

In principle the value of a 3-j symbol (9.39) can be computed by expanding
out all symmetry operators, but that is not recommended as the number of terms
in such expansions grows combinatorially with the total number of boxes in the
Young diagram Y. One can do a little better by carefully selecting certain symmetry
operators to expand. Then one simplifies the resulting diagrams using rules such as
(6.7), (6.8), (6.17), and (6.18) before expanding more symmetry operators. However,
a much simpler method exploits (9.36) and leads to the answer — in the case of
(9.40) it is dY = (n2 − 1)n2(n+ 1)(n+ 2)/144 – much faster.

The idea for evaluating a 3-j symbol (9.39) using (9.36) is to expand the projec-
tionsPX andPZ and determine the value ofmσ in (9.36) for each permutationσ
of the expansion. As an example, consider the 3-j symbol (9.40). With PY as in
(9.40) we find

σ

σ ⊗ 1

mσ⊗1 1 0 1 −1

1⊗ σ

m1⊗σ 1 −1 0 −1

so

PU = = 1
4

{
− + −

}

PX = PU ⊗ 1 = 1
4

{
− + −

}

M(PY;PX) = 1
4{1 − 0 + 1 − (−1)}

PZ = 1⊗PU = 1
4

{
− + −

}

M(PY;PZ) = 1
4{1 − (−1) + 0 − (−1)};

and hence

... ...
............

...

Y

Z

X
Y =

(
3

4

)2

αXαZ ...... Yk = ...... Yk ,

and the value of the 3-j is dY as claimed in (9.40). That the eigenvalue happens to
be 1 is an accident — in tabulations of 3-j symbols [112] it takes a range of values.

The relation (9.36) implies that the value of anyU(n) 3-j symbol (9.39) is
M(Y;X,Z)dY, wheredY is the dimension of the maximal irrep Y. Again we remark
thatM(Y;X,Z) is independentof n.
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9.7.2 6-j symbols

A generalU(n) 6-j symbol has form

U

Y

Z

X

V

W

=
U

V

Z

W

X

Y

... ...
...

...

...

...

......

...

...

. (9.41)

Using the relation (9.36) we immediately see that
U

Y

Z

X

V

W

= M dY , (9.42)

whereM is a pure symmetric groupSkY
number, independent ofU(n); it is sur-

prising that the only vestige ofU(n) is the fact that the value of a 6-j symbol is
proportional to the dimensiondY of its largest projection operator.

Example:Consider the 6-j constructed from the Young tableaux

U = 2

4

3 , V = 1 , W = 2 ,

X = 3

4
, Y =

1

2

3

4

, Z = 1

2
.

Using the idempotency we can double the projectionPY and sandwich the other
operators, as in (9.35). Several terms cancel in the expansion of the sandwiched
operator, and we are left with

=
1

24

{
− − −

mσ : +1 0 −1 0

+ − − +

}

0 −1 0 +1

.

We have listed the symmetry factorsmσ of (9.36) for each of the permutationsσ
sandwiched between the projection operatorsPY. We find that in this example the
symmetric group factorM of (9.42) is

M =
4

24
αU αV αW αX αZ =

1

3
,

so the value of the 6-j is
U

Y

Z

X

V

W

=
1

3
dY =

n (n2 − 1) (n− 2)

4!
.
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The method generalizes to evaluations of any3n-j symbol ofU(n) .

Challenge:We have seen that there is a coloring algorithm for the dimensionality
of the Young projection operators.Open question:Find a coloring algorithm for the
3-j’s and 6-j’s of SU(n).

9.7.3 Sum rules

Let Y be a standard tableau withkY boxes, and letΛ be the set of all standard
tableaux with one or more boxes (this excludes the trivialk = 0 representation).
Then the 3-j symbols obey the sum rule

∑

X,Z∈Λ

Y

X

Z

= (kY − 1)dY. (9.43)

The sum is finite, because the 3-j is nonvanishing only if the number of boxes in X
and Z add up tokY, and this happens only for a finite number of tableaux.

To prove the 3-j sum rule (9.43), recall that the Young projection operators con-
stitute a complete set,

∑
X∈Λk

PX = 1, where1 is the[k × k] unit matrix andΛk

the set of all standard tableaux of Young diagrams withk boxes. Hence:

∑

X,Z∈Λ

Y

X

Z

=

kY−1∑

kX=1

∑

X∈ΛkX

Z∈ΛkY−kX

......

... ...

X

Z

Y

=

kY−1∑

kX=1

... ...

... ...

Y

=

kY−1∑

kX=1

dY = (kY − 1)dY .

The sum rule offers a useful cross-check on tabulations of 3-j values.
There is a similar sum rule for the 6-j symbols:

∑

X,Z,U,V,W∈Λ

U

Y

Z

X

V

W

=
1

2
(kY − 1)(kY − 2) dY . (9.44)

Referring to the 6-j (9.41), letkU be the number of boxes in the Young diagramU,
kX be the number of boxes inX, etc.

Let kY be given. From (9.41) we see thatkX takes values between1 andkY − 2,
andkZ takes values between2 andkY − 1, subject to the constraintkX + kZ = kY.
We now sum over all tableaux U, V, and W keepingkY, kX, andkZ fixed. Note that
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kV can take values1, . . . , kZ − 1. Using completeness, we find

∑

U,V,W∈Λ

U

Y

Z

X

V

W

=

kZ−1∑

kV=1

∑

V∈ΛkV

∑

W∈ΛkZ−kV

∑

U∈ΛkY−kV

U

Y

Z

X

V

W

=

kZ−1∑

kV=1 ......

... ...

X

Z

Y

=(kZ − 1) Y

Z

X

.

Now sum over all tableaux X and Z to find

∑

X,Z,U,V,W∈Λ

U

Y

Z

X

V

W

=

kY−1∑

kZ=2

(kZ − 1)
∑

Z∈ΛkZ

∑

X∈ΛkY−kZ

Y

Z

X

=
1

2
(kY − 1)(kY − 2) dY ,

verifying the sum rule (9.44) for 6-j symbols.

9.8 SU(n) AND THE ADJOINT REP

The SU(n) group elements satisfydet G = 1, soSU(n) has an additional in-
variant, the Levi-Civita tensorεa1a2...an

= Ga1

a′

1Ga2

a′

2 · · ·Gan

a′

nεa′

1
a′

2
...a′

n
. The

diagrammatic notation for the Levi-Civita tensors was introduced in (6.27).
While the irreps ofU(n) are labeled by the standard tableaux with no more than

n rows (see section9.3), the standard tableaux with a maximum ofn− 1 rows label
the irreps ofSU(n). The reason is that inSU(n), a column of lengthn can be
removed from any diagram by contraction with the Levi-Civita tensor (6.27). For
example, forSU(4)

→ . (9.45)

Standard tableaux that differ only by columns of lengthn correspond to equivalent
irreps. Hence, for the standard tableaux labeling irreps ofSU(n), the highest column
is of heightn − 1, which is also the rank ofSU(n). A rep of SU(n), or An−1

in the Cartan classification (table7.6) is characterized byn − 1 Dynkin labels
b1b2 . . . bn−1. The corresponding Young diagram (defined in section9.3.1) is then
given by(b1b2 . . . bn−100 . . .), or (b1b2 . . . bn−1) for short.

For SU(n) a column withk boxes (antisymmetrization ofk covariant indices)
can be converted by contraction with the Levi-Civita tensorinto a column of(n−k)
boxes (corresponding to(n − k) contravariant indices). This operation associates
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with each diagram a conjugate diagram. Thus theconjugateof a SU(n) Young
diagram Y is constructed from the missing pieces needed to complete the rectangle
of n rows,

SU(5) : . (9.46)

To find the conjugate diagram, add squares below the diagram of Y such that the
resulting figure is a rectangle with heightn and width of the top row in Y. Remove
the squares corresponding to Y and rotate the rest by 180 degrees. The result is the
conjugate diagram of Y. For example, forSU(6) the irrep(20110) has(01102) as
its conjugate rep:

SU(6) : ro
tate

. (9.47)

In general, theSU(n) reps(b1b2 . . . bn−1) and(bn−1 . . . b2b1) are conjugate. For
example,(10 . . .0) stands for the defining rep, and its conjugate is(00 . . . 01), i.e.,
a column ofn− 1 boxes.

The Levi-Civita tensor converts an antisymmetrizedcollection ofn−1 “in”-indices
into 1 “out”-index, or, in other words, it converts an(n−1)-particle state into a single
antiparticle state. We usē to denote the single antiparticle state; it is the conjugate
of the fundamental representationsingle particle state. For example, forSU(3)
we have

(10) = = 3 (20) = = 6

(01) = = 3 (02) = = 6

(11) = = 8 (21) = = 15 .

(9.48)

The product of the fundamental rep and the conjugate rep̄ of SU(n) de-
composes into a singlet and theadjoint representation:

⊗ ¯ = ⊗

...



n−1 = 1 ⊕

...



n−1

n · n = n · n = 1 + (n2 − 1) .

Note that the conjugate of the diagram for the adjoint is again the adjoint.
Using the construction of section9.4, the birdtrack Young projection operator for

the adjoint representationA can be written

PA =
2(n− 1)

n ... ...

.
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UsingPA and the definition (9.38) of the 3-vertex,SU(n) group theory weights
involving quarks, antiquarks, and gluons can be calculatedby expansion of the
symmetry operators or by application of the recoupling relation. For this reason, we
prefer to keep the conjugate reps conjugate, rather than replacing them by columns
of (n− 1) defining reps, as this will give usSU(n) expressions valid for anyn.

9.9 AN APPLICATION OF THE NEGATIVE DIMENSIONALITY

THEOREM

An SU(n) invariant scalar is a fully contracted object (vacuum bubble) consisting
of Kronecker deltas and Levi-Civita symbols. Since there are no external legs, the
Levi-Civitas appear only in pairs, making it possible to combine them into antisym-
metrizers. In the birdtrack notation, anSU(n) invariant scalar is therefore a vacuum
bubble graph built only from symmetrizers and antisymmetrizers.

The negative dimensionality theorem forSU(n) states that for anySU(n) invari-
ant scalar exchanging symmetrizers and antisymmetrizers is equivalent to replacing
n by−n:

SU(n) = SU(−n) , (9.49)

where the bar onSU indicates transposition,i.e., exchange of symmetrizations and
antisymmetrizations. The theorem also applies toU(n) invariant scalars, since the
only difference betweenU(n) andSU(n) is the invariance of the Levi-Civita tensor
in SU(n). The proof of this theorem is given in chapter13.

We can apply the negative dimensionality theorem to computations of the dimen-
sions of theU(n) irreps,dY = trPY. Taking the transpose of a Young diagram
interchanges rows and columns, and it is therefore equivalent to interchanging the
symmetrizers and antisymmetrizers intrPY. The dimension of the irrep corre-
sponding to the transpose Young diagramYt can then be related to the dimension of
the irrep labeled by Y asdYt(n) = dY(−n)by the negative dimensionality theorem.

Example:[3, 1] is the transpose of[2, 1, 1],
(

1
4

2 3
)t

=
1

4

2
3 .

Note then → −n duality in the dimension formulas for these and other tableaux
(table9.2).

Now for standard tableaux X, Y, and Z, compare the diagram of the 3-jconstructed
from X, Y, and Z to that constructed fromXt,Zt, andYt. The diagrams are related by
a reflection in a vertical line, reversal of all the arrows on the lines, and interchange of
symmetrizers and antisymmetrizers. The first two operations do not change the value
of the diagram, and by the negative dimensionality theorem the values of two 3-j’s
are related byn ↔ −n (and possibly an overall sign; this sign is fixed by requiring
that the highest power ofn comes with a positive coefficient). In tabulations, it
suffices to calculate approximately half of all 3-j’s. Furthermore, the 3-j sum rule
(9.43) provides a cross-check.
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The two 6-j symbols

Z

X

V

Y

W
Ut

t

t t

t

t

V

U

Z

W
X

Y

(9.50)

are related by a reflection in a vertical line, reversal of allthe arrows on the lines, and
interchange of symmetrizers and antisymmetrizers — this can be seen by writing
out the 6-j symbols in terms of the Young projection operators as in (9.41). By the
negative dimensionality theorem, the values of the two 6-j symbols are therefore
related byn ↔ −n.

9.10 SU(n) MIXED TWO-INDEX TENSORS

We now return to the construction of projection operators from characteristic equa-
tions. Consider mixed tensorsq(1) ⊗ q(2) ∈ V ⊗V . The Kronecker delta invariants
are the same as in section9.1, but now they are drawn differently (we are looking
at a “cross channel”):

identity: 1=1b c
a,d = δcaδ

b
d = ,

trace: T=T b c
a,d = δbaδ

c
d = . (9.51)

TheT matrix satisfies a trivial characteristic equation

T2 = = nT , (9.52)

i.e., T(T − n1) = 0, with rootsλ1 = 0, λ2 = n. The corresponding projection
operators (3.48) are

P1=
1

n
T =

1

n
, (9.53)

P2=1− 1

n
T = − 1

n
= , (9.54)

with dimensionsd1 = trP1 = 1, d2 = trP2 = n2 − 1. P2 is the projection
operator for the adjoint rep ofSU(n). In this way, the invariant matrixT has
resolved the space of tensorsxa

b ∈ V ⊗ V into a singlet and a traceless part,

P1x =
1

n
xc
cδ

b
a , P2x = xb

a −
(
1

n
xc
c

)
δba . (9.55)

Both projection operators leaveδab invariant, so the generators of the unitary trans-
formations are given by their sum

U(n) :
1

a
= , (9.56)

and the dimension of theU(n) adjoint rep isN = trPA = δaaδ
b
b = n2. If we extend

the list of primitive invariants from the Kronecker delta tothe Kronecker delta and
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the Levi-Civita tensor (6.27), the singlet subspace does not satisfy the invariance
condition (6.56)

... 6= 0 .

For the traceless subspace (9.54), the invariance condition is

... − 1

n
... = 0 .

This is the same relation as (6.25), as can be shown by expanding the antisymmetriza-
tion operator using (6.19), so the invariance condition is satisfied. The adjoint rep
is given by

SU(n) :
1

a
= − 1

n
1

a
(Ti)

a
b (Ti)

d
c =δac δ

d
b − 1

n
δab δ

d
c . (9.57)

The special unitary groupSU(n) is, by definition, the invariance group of the Levi-
Civita tensor (hence “special”) and the Kronecker delta (hence “unitary”), and its
dimension isN = n2 − 1. The defining rep Dynkin index follows from (7.27) and
(7.28)

ℓ−1 = 2n (9.58)

(This was evaluated in the example of section2.2.) The Dynkin index for the singlet
rep (9.55) vanishes identically, as it does for any singlet rep.

9.11 SU(n) MIXED DEFINING ⊗ ADJOINT TENSORS

In this and the following section we generalize the reduction by invariant matrices
to spaces other than the defining rep. Such techniques will bevery useful later on, in
our construction of the exceptional Lie groups. We considerthe defining⊗ adjoint
tensor space as a projection fromV ⊗ V ⊗ V space:

= . (9.59)

The following two invariant matrices acting onV 2⊗V space contract or interchange
defining rep indices:

R= (9.60)

Q= = . (9.61)
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A⊗ q = V1 ⊕ V2 ⊕ V3

Dynkin labels (10 . . . 1)⊗ (10 . . .) = (10 . . .) ⊕ (200 . . . 01) ⊕ (010 . . . 01)

..

. ⊗ = + ... +
..
.

Dimensions: (n2 − 1)n = n + n(n−1)(n+2)
2 + n(n+1)(n−2)

2

Indices: n+ n2−1
2n = 1

2n + (n+2)(3n−1)
4n + (n−2)(3n+1)

4n

SU(3) example:

Dimensions: 8 · 3 = 3 + 15 + 6

Indices: 13/3 = 1/6 + 10/3 + 5/6

SU(4) example:

Dimensions: 15 · 4 = 4 + 36 + 20

Indices: 47/8 = 1/8 + 33/8 + 13/8

Projection operators:

P1 = n
n2−1

P2 = 1
2

{
+ − 1

n+1

}

P2 = 1
2

{
− − 1

n−1

}

Table 9.3SU(n) V ⊗ A Clebsch-Gordan series.



GroupTheory version 9.0.1, April 8, 2011

UNITARY GROUPS 111

R projects onto the defining space and satisfies the characteristic equation

R2 = =
n2 − 1

n
R . (9.62)

The corresponding projection operators (3.48) are

P1=
n

n2 − 1
,

P4= − n

n2 − 1
. (9.63)

Q takes a single eigenvalue on theP1 subspace

QR = = − 1

n
R . (9.64)

Q2 is computed by inserting the adjoint rep projection operator (9.57):

Q2 = = − 1

n
. (9.65)

The projection on theP4 subspace yields the characteristic equation

P4(Q
2 − 1) = 0 , (9.66)

with the associated projection operators

P2=
1

2
P4(1 +Q) (9.67)

=
1

2

{
− n

n2 − 1

}{
+

}

=
1

2

{
+ − 1

n+ 1

}
,

P3=
1

2
P4(1−Q)

=
1

2

{
− − 1

n− 1

}
. (9.68)

The dimensions of the two subspaces are computed by taking traces of their projec-
tion operators:

d2=trP2 = 2P =
1

2





+ − 1

n+ 1





=
1

2
(nN +N −N/(n+ 1)) =

1

2
(n− 1)n(n+ 2) (9.69)

and similarly ford3. This is tabulated in table9.3.
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9.11.1 Algebra of invariants

Mostly for illustration purposes, let us now perform the same calculation by utilizing
the algebra of invariants method outlined in section3.4. A possible basis set, picked
from theV ⊗A → V ⊗A linearly independent tree invariants, consists of

(e,R,Q) =

(
, ,

)
. (9.70)

The multiplication table (3.42) has been worked out in (9.62), (9.64), and (9.65).
For example, the(tα)βγ matrix rep forQt is

∑

γ∈T

(Q)β
γtγ = Q




e

R

Q


 =




0 0 1
0 −1/n 0
1 −1/n 0






e

R

Q


 (9.71)

and similarly forR. In this way, we obtain the[3×3] matrix rep of the algebra of
invariants

{e,R,Q} =








1 0 0
0 1 0
0 0 1


 ,




0 1 0
0 n− 1

n 0
0 −1/n 0


 ,




0 0 1
0 −1/n 0
1 −1/n 0





 . (9.72)

From (9.62) we already know that the eigenvalues ofR are{0, 0, n − 1/n}. The
last eigenvalue yields the projection operatorP1 = (n− 1/n)−1, but the projection
operatorP4 yields a 2-dimensional degenerate rep.Q has three distinct eigenvalues
{−1/n, 1,−1} and is thus more interesting; the corresponding projectionoperators
fully decompose theV ⊗ A space. The− 1/n eigenspace projection operator is
againP1, butP4 is split into two subspaces, verifying (9.68) and (9.67):

P2=
(Q+ 1)(Q+ 1

n1)

(1 + 1)(1 + 1/n)
=

1

2

(
1+Q− 1

n+ 1
R

)

P3=
(Q− 1)(Q+ 1

n1)

(−1− 1)(−1 + 1/n)
=

1

2

(
1−Q− 1

n− 1
R

)
. (9.73)

We see that the matrix rep of the algebra of invariants is an alternative tool for
implementing the full reduction, perhaps easier to implement as a computation than
an out and out birdtracks evaluation.

To summarize, the invariant matrixR projects out the 1-particle subspaceP1.
The particle exchange matrixQ splits the remainder into the irreducibleV ⊗ A
subspacesP2 andP3.

9.12 SU(n) TWO-INDEX ADJOINT TENSORS

Consider the Kronecker product of two adjoint reps. We want to reduce the space
of tensorsxij ∈ A⊗A, with i = 1, 2, . . .N . The first decomposition is the obvious
decomposition (9.4) into the symmetric and antisymmetric subspaces,

1 = S + A

= + .
(9.74)
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The symmetric part can be split into the trace and the traceless part, as in (9.54):

S=
1

N
T+PS

=
1

N
+

{
− 1

N

}
. (9.75)

Further decompositioncan be effected by studying invariant matrices in theV 2⊗V
2

space. We can visualize the relation betweenA⊗A andV 2 ⊗ V
2

by the identity

= . (9.76)

This suggests the introduction of two invariant matrices:

Q= (9.77)

R= = . (9.78)

R can be decomposed by (9.54) into a singlet and the adjoint rep

R = + 1
n

= R′ + 1
nT .

(9.79)

The singlet has already been taken into account in the trace-traceless tensor decom-
position (9.75). TheR′ projection on the antisymmetric subspace is

AR′A = . (9.80)

By the Lie algebra (4.47),

(AR′A)2 =
1

16
=

n

8
=

n

2
AR′A , (9.81)

and the associated projection operators,

(P5)ij,kl=
1

2n
CijmCmlk =

1

2n

Pa= − 1

2n
, (9.82)

split the antisymmetric subspace into the adjoint rep and a remainder. On the sym-
metric subspace (9.75),R′ acts asPSR

′PS . AsR′T = 0, this is the same asSR′S.
Consider

(SR′S)2 = .
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We compute

=
1

2

{
+

}

=
1

2

{
− 1

n
+ − 1

n

}

=
1

2n

{
n2 − 4

}
. (9.83)

Hence,SR′S satisfies the characteristic equation
(
SR′S− n2 − 4

2n

)
SR′S = 0 . (9.84)

The associated projection operators split up the tracelesssymmetric subspace (9.75)
into the adjoint rep and a remainder:

P2=
2n

n2 − 4
SR′S =

2n

n2 − 4
, (9.85)

P2′ =PS −P2 . (9.86)

The Clebsch-Gordan coefficients forP2 are known as the Gell-Manndijk ten-
sors [137]:

j
k

i
=

1

2
=

1

2
dijk . (9.87)

ForSU(3),P2 is the projection operator(8⊗8) symmetric→ 8. In terms ofdijk ’s,
we have

(P2)ij,kℓ =
n

2(n2 − 4)
dijmdmkℓ =

n

2(n2 − 4)
, (9.88)

with the normalization

dijkdkjℓ = =
2(n2 − 4)

n
δiℓ . (9.89)

Next we turn to the decomposition of the symmetric subspace induced by matrixQ
(9.77). Q commutes withS:

QS= =
1

2



 +





=SQ = SQS . (9.90)

On the 1-dimensional subspace in (9.75), it takes eigenvalue−1/n

TQ = = − 1

n
T ; (9.91)

soQ also commutes with the projection operatorPS from (9.75),

QPS = Q

(
S− 1

n2 − 1
T

)
= PSQ . (9.92)
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Q2 is easily evaluated by inserting the adjoint rep projectionoperators (9.54)

Q2=

= − 1

n

(
+

)
+

1

n2
. (9.93)

Projecting on the traceless symmetric subspace gives

PS

(
Q2 − 1 +

n2 − 4

n2
P2

)
= 0 . (9.94)

On theP2 subspaceQ gives

=
1

2



 +





=
1

2



 − 1

n

+ − 1

n





=− 2

n
. (9.95)

Hence,Q has a single eigenvalue,

QP2 = − 2

n
P2 , (9.96)

and does not decompose theP2 subspace; this is as it should be, asP2 is the adjoint
rep and is thus irreducible. OnP2′ subspace (9.93) yields a characteristic equation

P2′(Q
2 − 1) = 0 ,

with the associated projection operators

P3=
1

2
P2′(1−Q) (9.97)

=
1

2



 − − 1

2(n− 2)
− 1

n(n− 1)



 ,

P4=
1

2
P2′(1 +Q) =

1

2
(PS −P1)(1 +Q)

=
1

2

(
PS −P1 + SQ− 1

n2 − 1
TQ+

2

n
P1

)

=
1

2

(
S+ SQ− n− 2

n
P1 −

1

n(n+ 1)
T

)
(9.98)

=
1

2



 + − 1

2(n+ 2)
− 1

n(n+ 1)



 .
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This completes the reduction of the symmetric subspace in (9.74). As in (9.90), Q
commutes withA

QA = AQ = AQA . (9.99)

On the antisymmetric subspace, theQ2 equation (9.93) becomes

0 = A

(
Q2 − 1 +

2

n
R

)
, A = A(Q2 − 1−PA) . (9.100)

The adjoint rep (9.82) should be irreducible. Indeed, it follows from the Lie algebra,
thatQ has zero eigenvalue for any simple group:

P5Q =
1

CA
= 0 . (9.101)

On the remaining antisymmetric subspacePa (9.100) yields the characteristic equa-
tion

Pa(Q
2 − 1) = 0 , (9.102)

with corresponding projection operators

P6=
1

2
Pa(1 +Q) =

1

2
A(1 +Q−PA)

=
1

2



 + − 1

CA



 , (9.103)

P7=
1

2
Pa(1 −Q)

=
1

2



 − − 1

CA



 . (9.104)

To compute the dimensions of these reps we need

trAQ = =
1

2





−





= 0 , (9.105)

so both reps have the same dimension

d6=d7 =
1

2
(trA− trPA) =

1

2

{
(n2 − 1)(n2 − 2)

2
− n2 − 1

}

=
(n2 − 1)(n2 − 4)

4
. (9.106)

Indeed, the two reps are conjugate reps. The identity

= − , (9.107)

obtained by interchanging the two left adjoint rep legs, implies that the projection
operators (9.103) and (9.104) are related by the reversal of the loop arrow. This is
the birdtrack notation for complex conjugation (see section 4.1).

This decomposition of twoSU(n) adjoint reps is summarized in table9.4.
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9.13 CASIMIRS FOR THE FULLY SYMMETRIC REPS OF SU(n)

In this section we carry out a few explicit birdtrack casimirevaluations.
Consider the fully symmetric Kronecker product ofp particle reps. Its Dynkin

label (defined on page106) is (p, 0, 0 . . .0), and the corresponding Young tableau
is a row ofp boxes: . .. P . The projection operator is given by (6.4)

PS = S = 2

p...

1
,

and the generator (4.40) in the symmetric rep is

T i = p ... ...... . (9.108)

To compute the casimirs, we introduce matrices:

X=xiT
i = p ...

......

Xb
a=xi(T

i)ba = a b . (9.109)
We next compute the powers ofX :

X2=p

{

...... ... + (p− 1)

...

... ...

}

X3=p

{

... + 3(p− 1)

... + (p− 1)(p− 2)

... }

X4=p





... + 4(p− 1)

...

+ 3(p− 1)

...

+6(p− 1)(p− 2)

...

+ (p− 1)(p− 2)(p− 3)

...





... (9.110)
ThetrXk are then

trX0=ds

(
n+ p− 1

p

)
(see (6.13)) (9.111)

trX=0 (semisimplicity) (9.112)

trX2=ds
p(p+ n)

n(n+ 1)
tr x2 (9.113)

trX3=
ds
n
p

(
1 + 3

p− 1

n+ 1
+ 2

(p− 1)(p− 2)

(n+ 1)(n+ 2)

)
trx3

=
(n+ p)!(n+ 2p)

(n+ 2)!(p− 1)!
tr x3 = ds

p(n+ p)(n+ 2p)

n(n+ 1)(n+ 2)
tr x3 (9.114)

trX4=d
p

n

{(
1 + 7

p− 1

n+ 1
+ 12

p− 1

n+ 1

p− 2

n+ 2
+ 6

p− 1

n+ 1

p− 2

n+ 2

p− 3

n+ 3

)
tr x4

+
p− 1

n+ 1

(
3 + 6

p− 2

n+ 2
+ 3

p− 2

n+ 2

p− 3

n+ 3

)(
tr x2

)2
}

. (9.115)
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The quadratic Dynkin index is given by the ratio oftrX2 andtrA X2 for the adjoint
rep (7.30):

ℓ2 =
trX2

trA X2
=

dsp(p+ n)

2n2(n+ 1)
. (9.116)

To take a random example from the Patera-Sankoff tables [274], the SU(6) rep
dimension and Dynkin index

rep dim ℓ2
(0,0,0,0,0,14) 11628 6460

(9.117)

check with the above expressions.

9.14 SU(n), U(n) EQUIVALENCE IN ADJOINT REP

The following simple observation speeds up evaluation of pure adjoint rep group-
theoretic weights (3n-j)’s for SU(n): The adjoint rep weights forU(n) andSU(n)
are identical. This means that we can use theU(n) adjoint projection operator

U(n) : ������������ = (9.118)

instead of the tracelessSU(n) projection operator (9.54), and halve the number of
terms in the expansion of each adjoint line.

Proof: Any internal adjoint line connects twoCijk ’s:

= −

=− + .

The trace part of (9.54) cancels on each line; hence, it does not contribute to the pure
adjoint rep diagrams. As an example, we reevaluate the adjoint quadratic casimir
for SU(n):

CAN =
����

����

= 2

����

= 2

{
− 2

}
.

Now substitute theU(n) adjoint projection operator (9.118):

CAN = 2

{

���� ����

���� ����

− 2
���
���
���
���

���� ����

}
= 2n(n2 − 1) ,

in agreement with the first exercise of section2.2.
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9.15 SOURCES

Sections9.3–9.9of this chapter are based on Elvanget al.[113]. The introduction to
the Young tableaux folows ref. [113], which, in turn, is based on Lichtenberg [214]
and Hamermesh [153]. The rules for reduction of direct products follow Lichten-
berg [214], stated here as in ref. [112]. The construction of the Young projection
operators directly from the Young tableaux is described in van der Waerden [335],
who ascribes the idea to von Neumann.

R. Penrose’s papers are the first (known to the authors) to cast the Young pro-
jection operators into a diagrammatic form. Here we use Penrose diagrammatic
notation for symmetrization operators [281], Levi-Civita tensors [283], and “strand
networks” [282]. For several specific, few-particle examples, diagrammatic Young
projection operators were constructed by Canning [41], Mandula [227], and Sted-
man [319]. A diagrammatic construction of theU(n) Young projection operators
for anyYoung tableau was outlined in the unpublished ref. [186], without proofs;
the proofs of appendixB that the Young projection operators so constructed are
unique were given in ref. [112].
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n

9
.0

.1
,A

p
ril8

,2
0

1
1

Symmetric
︷ ︸︸ ︷

Antisymmetric
︷ ︸︸ ︷

V A ⊗ V A = V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ V5 ⊕ V6 ⊕ V7

Dimensions (n2 − 1)2 = 1 +(n2 − 1)+n2(n−3)(n+1)
4

+ n2(n+3)(n−1)
4

+(n2 − 1)+ (n2
−1)(n2

−4)
4

+ (n2
−1)(n2

−4)
4

Dynkin indices 2 (n2 − 1) = 0 + 1 + n(n−3)
2

+ n(n+3)
2

+ 1 + n2
−4
2

+ n2
−4
2

SU(3) example:

Dimensions 82 = 1 + 8 + 0 + 27 + 8 + 10 + 10

Indices 2 · 8 = 0 + 1 + 0 + 9 + 1 + 5/2 + 5/2

SU(4) example:

(101) ⊗ (101) = (000) ⊕ (101) ⊕ (020) ⊕ (202) ⊕ (101) ⊕ (012) ⊕ (210)

Dimensions 152 = 1 + 15 + 20 + 84 + 15 + 45 + 45

Indices 2 · 15 = 0 + 1 + 2 + 14 + 1 + 6 + 6

Projection operators

P1 = 1
n2−1

P2 = n
2(n2−4)

P5 = 1
2n ��������

P3 = 1
2

{

− − 1
2(n−2)

− 1
n(n−1)

}

P6 = 1
2

{

���
���
���
���
���
���

���
���
���
���
���
���

+ − 1
2n ��������

}

P4 = 1
2

{

+ − 1
2(n+2)

− 1
n(n+1)

}

P7 = 1
2

{

���
���
���
���
���
���

���
���
���
���
���
���

− − 1
2n ��������

}

Table 9.4 SU(n), n ≥ 3 Clebsch-Gordan series forA⊗ A.
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Orthogonal groups

Orthogonal groupSO(n) is the group of transformations that leaves invariant a
symmetric quadratic form(q, q) = gµνq

µqν :

gµν = gνµ = µ ν µ, ν = 1, 2, . . . , n . (10.1)

If (q, q) is an invariant, so is its complex conjugate(q, q)∗ = gµνqµqν , and

gµν = gνµ = µ ν (10.2)

is also an invariant tensor. The matrixAν
µ = gµσg

σν must be proportional to unity, as
otherwise its characteristic equation would decompose thedefiningn-dimensional
rep. A convenient normalization is

gµσg
σν =δνµ

= . (10.3)

As the indices can be raised and lowered at will, nothing is gained by keeping the
arrows. Our convention will be to perform all contractions with metric tensors with
upper indices and omit the arrows and the open dots:

gµν ≡ µ ν . (10.4)

All other tensors will have lower indices. For example, Lie group generators(Ti)µ
ν

from (4.31) will be replaced by

(Ti)µ
ν = → (Ti)µν = .

The invariance condition (4.36) for the metric tensor

+ =0

(Ti)µ
σgσν + (Ti)ν

σgµσ=0 (10.5)

becomes, in this convention, a statement that theSO(n) generators are antisymmet-
ric:

+ = 0

(Ti)µν =− (Ti)νµ . (10.6)

Our analysis of the reps ofSO(n) will depend only on the existence of a sym-
metric metric tensor and its invertability, and not on its eigenvalues. The resulting
Clebsch-Gordan series applies both to the compactSO(n) and noncompact orthog-
onal groups, such as the Minkowski groupSO(1, 3). In this chapter, we outline the
construction ofSO(n) tensor reps. Spinor reps will be taken up in chapter11.
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10.1 TWO-INDEX TENSORS

In section9.1we have decomposed theSU(n) 2-index tensors into symmetric and
antisymmetric parts. ForSO(n), the rule is to lower all indices on all tensors, and
the symmetric state projection operator (9.2) is replaced by

Sµν,ρσ =gρρ′gσσ′Sµν ,
ρ′σ′

=
1

2
(gµσgνρ + gµρgνσ)

λ1
µ

ν

σ

ρ
= .

From now on, we drop all arrows andgµν ’s and write (9.4) as

= +

gµσgνρ=
1

2
(gµσgνρ + gµρgνσ) +

1

2
(gµσgνρ − gµρgνσ) . (10.7)

The new invariant, specific toSO(n), is the index contraction:

Tµν,ρσ = gµνgρσ , T = . (10.8)

The characteristic equation for the trace invariant

T2 = = nT (10.9)

yields the trace and the traceless part projection operators (9.53), (9.54). As T is
symmetric,ST = T, only the symmetric subspace is resolved by this invariant.
The final decomposition ofSO(n) 2-index tensors is
traceless symmetric:

(P2)µν,ρσ =
1

2
(gµσgνρ + gµρgνσ)−

1

n
gµνgρσ = − 1

n
,

(10.10)

singlet: (P1)µν,ρσ =
1

n
gµνgρσ =

1

n
, (10.11)

antisymmetric:(P3)µν,ρσ =
1

2
(gµσgνρ − gµρgνσ) = . (10.12)

The adjoint rep (9.57) of SU(n) is decomposed into the traceless symmetric and
the antisymmetric parts. To determine which of them is the new adjoint rep, we sub-
stitute them into the invariance condition (10.5). Only the antisymmetric projection
operator satisfies the invariance condition

+ = 0 ,

so the adjoint rep projection operator forSO(n) is

1

a
= . (10.13)
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Young tableaux × = • + +

Dynkin labels (10 . . .)× (10 . . .) = (00 . . .) + (010 . . .) + (20 . . .)

Dimensions n2 = 1 + n(n−1)
2

+ (n+2)(n−1)
2

Dynkin indices 2n 1
n−2

= 0 + 1 + n+2
n−2

Projectors = 1
n

+
���
���
���
���
���
���

���
���
���
���
���
���

+

{

− 1
n

}

Table 10.1SO(n) Clebsch-Gordan series forV ⊗V .

The dimension ofSO(n) is given by the trace of the adjoint projection operator:

N = trPA = =
n(n− 1)

2
. (10.14)

Dimensions of the other reps and the Dynkin indices (see section 7.5) are listed in
table10.1.

10.2 MIXED ADJOINT ⊗ DEFINING REP TENSORS

The mixed adjoint-defining rep tensors are decomposed in thesame way as for
SU(n). The intermediate defining rep state matrixR (9.60) satisfies the character-
istic equation

R2 = =
n− 1

2
R . (10.15)

The corresponding projection operators are

P1=
2

n− 1
,

P2= − 2

n− 1
. (10.16)

The eigenvalue ofQ from (9.61) on the defining subspace can be computed by
inserting the adjoint projection operator (10.13):

QR = =
1

2
R . (10.17)

Q2 is also computed by inserting (10.13):

Q2 = =
1

2

{
−

}
=

1

2
(1−Q) . (10.18)
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The eigenvalues are{−1, 12}, and the associated projection operators (3.48) are

P2=P4
2

3
(1 +Q) =

2

3

(
1− 2

n− 1
R

)
(1 +Q) =

2

3

(
1 +Q− 3

n− 1
R

)

=
2

3

{
+ − 3

n− 1

}
, (10.19)

P3=P4
1

3
(1− 2Q) =

1

3

{
− 2

}
. (10.20)

This decomposition is summarized in table10.2. The same decomposition can be
obtained by viewing theSO(n) defining-adjoint tensors as ⊗ products, and
starting with theSU(n) decomposition along the lines of section9.2.

10.3 TWO-INDEX ADJOINT TENSORS

The reduction of the 2-index adjoint rep tensors proceeds asfor SU(n). The annihi-
lation matrixR (9.78) induces decomposition of (10.11) through (10.12) into three
tensor spaces

R= (10.21)

=
1

n
+

{
− 1

n

}
+ .

On the antisymmetric subspace, the last term projects out the adjoint rep:

=
1

n− 2
+

{
− 1

n− 2

}
. (10.22)

The last term in (10.21) does not affect the symmetric subspace

=
1

2

{
+

}

=
1

2

{
−

}
= 0 , (10.23)

because of the antisymmetry of theSO(n) generators (dijk = 0 for orthogonal
groups). The second term in (10.21),

RS = − 1

n
, (10.24)

projects out the intermediate symmetric 2-index tensors subspace. To normalize it,
we compute(RS)2:

(RS)2= − 2

n
+

n− 1

2n

=
n− 2

4
RS . (10.25)



G
ro

u
p

T
h

eo
ry

versio
n

9
.0

.1
,A

p
ril8

,2
0

1
1

Young tableaux × = + +

Dynkin labels (010 . . .)× (100 . . .) = (100 . . .) + (0010 . . .) + (110 . . .)

Dimensions n2(n−1)
2

= n + n(n−1)(n−2)
6

+ n(n2
−4)

3

SO(3) 9 = 3 + 1 + 5

SO(4) 24 = 4 + 4 + 16

Projectors = 2
n−1 ���

���
���

���
���
���

����
����
����
���� + 1

3

{

− 2

}

+ 2
3

{

+ − 3
n−1 ���

���
���

���
���
���

����
����
����
����

}

Table 10.2SO(n) A⊗V Clebsch-Gordan series.
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RS decomposes the symmetric 2-index adjoint subspace into

=
2

n(n− 1)
+

+

{
− − 2

n(n− 1)

}

P2= =
4

n− 2

{
− 1

n

}
. (10.26)

Because of the antisymmetry of theSO(n) generators, the index interchange matrix
(9.77) is symmetric,

SQ = SQ∗=Q

= = , (10.27)

so it cannot induce a decomposition of the antisymmetric subspace in (10.22). Here
Q∗ indicates the diagram forQ with the arrow reversed. On the singlet subspace it
has eigenvalue12 :

QT = =
1

2
T . (10.28)

On the symmetric 2-index defining rep tensors subspace, its eigenvalue is also12 , as
the evaluation by the substitution of adjoint projection operators by (10.13) yields

QR = =
1

2
SR . (10.29)

Q2 is evaluated in the same manner:

Q2= =
1

2

{
−

}

=
1

2
S(1−Q) . (10.30)

Thus,Q satisfies the same characteristic equation as in (10.18). The corresponding
projection operators decompose the symmetric subspace (the third term in (10.26))
into

P3=

{
− − 2

n(n− 1)

}
2

3

{
+

}

=
2

3

{
+

}
− − 2

n(n− 1)
, (10.31)

P4=
1

3

{
− 2

}
. (10.32)
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Symmetric
︷ ︸︸ ︷

Antisymmetric
︷ ︸︸ ︷

A ⊗ A = V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ V5 ⊕ V6

Young tableaux × = • + + + + +

Dynkin labels (010…)×(010…) = (00…) + (20…) + (02…) + (00010…) + (010…) + (1010…)

Dimensions n2(n−1)2

4
= 1 + (n−1)(n+2)

2
+ (n−3)n(n+1)(n+2)

12
+ n(n−1)(n−2)(n−3)

24
+ n(n−1)

2
+ n(n+2)(n−1)(n−3)

8

SO(3) 9 = 1 + 5 + 0 + 0 + 3 + 0

SO(4) 36 = 1 + 9 + 10 + 1 + 6 + 9

SO(5)=Sp(4) 100 = 1 + 14 + 35 + 5 + 10 + 35

SO(6)=SU(4) 225 = 1 + 20 + 84 + 15 + 15 + (45+45)

SO(7) 441 = 1 + 27 + 168 + 35 + 21 + 189

SO(8) 784 = 1 + 35 + 300 + 70 + 28 + 350

SO(9) 1296 = 1 + 44 + 495 + 126 + 36 + 594

SO(10) 2025 = 1 + 54 + 770 + 210 + 45 + 945

Projection operators

P1 = 2
n(n−1)

, P4 = 1
3

{

− 2

}

P2 = 4
n−2

{

− 1
n

}

, P5 = 1
n−2 ���� ����

P3 = 2
3

{

+

}

− 4
n−2

+ 2
(n−1)(n−2)

, P6 = − 1
n−2 ���� ����

Table 10.3 SO(n), n ≥ 3 Clebsch-Gordan series forA⊗A.
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This Clebsch-Gordan series is summarized in table10.3.
The reduction of 2-index adjoint tensors, outlined above, is patterned after the

reduction forSU(n). Another, fully equivalent approach, is to consider theSO(n)

2-index adjoint tensors as ⊗ products and start from the decomposition of
section9.5. This will be partially carried out in section10.5.

10.4 THREE-INDEX TENSORS

In the reduction of the 2-index tensors in section10.1, the newSO(n) invariant
was the index contraction (10.8). In general, for a multi-index tensor, theSU(n) →
SO(n) reduction is due to the additional index contraction invariants. Consider the
fully symmetric 3-indexSU(n) state in table9.1. The newSO(n) invariant matrix
on this space is

R = . (10.33)

This is a projection onto the defining rep. The normalizationfollows from

=
1

3

{
+ 2

}
=

n+ 2

3
. (10.34)

The rep ofSU(n) thus splits into

=
3

n+ 2
+

{
− 3

n+ 2

}
. (10.35)

On the mixed symmetry subspace in table9.1, one can try various index contraction
matricesRi. However, their projectionsP2RiP2 are all proportional to

. (10.36)

The normalization is fixed by

=
3

8
(n− 1) , (10.37)

and the mixed symmetry rep ofSU(n) in (9.12) splits as

4

3
=

8

3(n− 1)
(10.38)

+
4

3

{
− 2

n− 1

}
.

The other mixed symmetry rep in table9.1 splits in analogous fashion. The fully
antisymmetric space is not affected by contractions, as

= 0 (10.39)

by the symmetry ofgµν . Besides, as is the adjoint rep, we have already performed

the ⊗ decomposition in the preceding section. The full Clebsch-Gordan series
for theSO(n) 3-index tensors is given in table10.4.
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A⊗V
︷ ︸︸ ︷

V ⊗V ⊗V V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ V5 ⊕ V6 ⊕ V7

Young tableaux 1 × 2 × 3 = + +
3

21 + + 1
2

3 + +

Dynkin labels (30 . . .) + (10 . . .) + (110 . . .) + (10 . . .) + (110 . . .) + (10 . . .) + (0010 . . .)

Dimensions n3 = (n−1)n(n+4)
6

+ n + n(n2
−4)

3
+ n + n(n2

−4)
3

+ n + n(n−1)(n−2)
6

SO(3) 27 = 7 + 3 + 5 + 3 + 5 + 3 + 1

SO(4) 64 = 16 + 4 + 16 + 4 + 16 + 4 + 4

Projection operators

P1 = − 3
n+2

P5 = 4
3

− 2
n−1

P2 = 3
n+2

P6 = 2
n−1

P3 = 4
3

{

− 2
n−1

}

P7 =

P4 = 8
3(n−1)

Table 10.4SO(n) Clebsch-Gordan series forV ⊗V ⊗V .
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10.5 GRAVITY TENSORS

In a different application of birdtracks, we now change the languageand construct the
“irreducible rank-four gravity curvature tensors.” The birdtrack notation for Young
projection operators had originally been invented by Penrose [281] in this context.
The Riemann-Christoffel curvature tensor has the following symmetries [337]:

Rαβγδ=−Rβαγδ

Rαβγδ= Rγδαβ (10.40)

Rαβγδ +Rβγαδ +Rγαβδ=0 .

Introducing birdtrack notation for the Riemann tensor

Rαβγδ =
β
γ

α

R

δ

, (10.41)

we can state the above symmetries as

R = R , (10.42)

R = R , (10.43)

R + R + R = 0 . (10.44)

The first condition says thatR lies in ⊗ subspace. We have decomposed this

subspace in table9.2. The second condition says thatR lies in ↔ interchange-

symmetric subspace, which splits into and subspaces:

1

2

(
+

)
=

4

3
+ . (10.45)

The third condition says thatR has no components in thespace:

R + R + R = 3 R = 0 . (10.46)

Hence, the Riemann tensor is a pure tensor, whose symmetries are summarized

by the rep projection operator [281]:

(PR)αβγδ,
δ′γ′β′α′

=
4

3 γ
δ

α
ββ

δ
γ

´α

´
´
´ (10.47)

(PRR)αβγδ=(PR)αβγδ,
δ′γ′β′α′

Rα′β′γ′δ′ = Rαβγδ

4

3
R = R . (10.48)
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This compact statement of the Riemann tensor symmetries yields immediately the
number of independent components ofRαβγδ, i.e., the dimension of the reps
in table9.2:

dR = trPR =
n2(n2 − 1)

12
. (10.49)

The Riemann tensor has the symmetries of therep ofSU(n). However, gravity is
also characterized by the symmetric tensorgαβ, that induces localSO(n) invariance
(more preciselySO(1, n − 1), but compactness is not important here). The extra
invariants built fromgαβ ’s decomposeSU(n) reps into sums ofSO(n) reps.

TheSU(n) subspace, corresponding to , is decomposed by theSO(n) inter-
mediate 2-index state contraction matrix

Q = . (10.50)

The intermediate 2-index subspace splits into three irreducible reps by (10.11)-
(10.12):

Q=
1

n
+

{
− 1

n

}
+

=Q0 +QS +QA . (10.51)

The Riemann tensor is symmetric under the interchange of index pairs, so the anti-
symmetric 2-index state does not contribute

PRQA = 0 . (10.52)

The normalization of the remaining two projectors is fixed bycomputation of
Q2

S ,Q
2
0:

P0=
2

n(n− 1)
, (10.53)

PS =
4

n− 2

{
− 1

n

}
. (10.54)

This completes theSO(n) reduction of the SU(n) rep (10.48):

SU(n) → SO(n)

→ + + ◦
PR = PW + PS + P0

n2(n2−1)
12 = (n+2)(n+1)n(n−3)

12 + (n+2)(n−1)
2 + 1

(10.55)

Here the projector for the traceless tensor is given byPW = PR −PS −P0:

PW =
4

3
− 4

n− 2
+

2

(n− 1)(n− 2)
.

(10.56)
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The above three projectors project out the standard relativity tensors:

Curvature scalar:

R = − R = Rµ ν
νµ (10.57)

Traceless Ricci tensor:

Rµν − 1

n
gµνR = − R +

1

n
R (10.58)

Weyl tensor:

Cλµνκ=(PWR)λµνκ

= R − 4

n− 2
R +

2

(n− 1)(n− 2)
R

=Rλµνκ +
1

n− 2
(gµνRλκ − gλνRµκ − gµκRλν + gλκRµν)

− 1

(n− 1)(n− 2)
(gλκgµν − gλνgµκ)R . (10.59)

The numbers of independent components of these tensors are given by the dimen-
sions of corresponding subspaces in (10.55). The Ricci tensor contributes first in
three dimensions, and the Weyl tensor first in four, so we have

n = 2 : Rλµνκ = (P0R)λµνκ = 1
2 (gλνgµκ − gλκgµν)R

n = 3 : = gλνRµκ − gµνRλκ + gµκRλν − gλκRµν

− 1
2 (gλνgµκ − gλκgµν)R .

(10.60)

The last example of this section is an application of birdtracks to general relativity
index manipulations. The object is to find the characteristic equation for the Riemann
tensor infour dimensions. We contract (6.24) with two Riemann tensors:

0 =

R

R . (10.61)

Expanding with (6.19) we obtain the characteristic equation

0=2 RR − 4 RR − 4 RR

+2R R −
{
R2

2
− 2 RR +

1

2
RR

}
. (10.62)

For example, this identity has been used by Adleret al., eq. (E2) in ref. [5].
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10.6 SO(n) DYNKIN LABELS

In general, one has to distinguish between the odd- and the even-dimensional or-
thogonal groups, as well as their spinor and nonspinor reps.In this chapter, we study
only the tensor reps; spinor reps will be taken up in chapter11.

For SO(2r+1) reps there arer Dynkin labels(a1a2 . . . ar−1Z). If Z is odd, the
rep is spinor; ifZ is even, it is tensor. For the tensor reps, the correspondingYoung
tableau in the Fischler notation [122] is given by

(a1a2 . . . ar−1Z) → (a1a2 . . . ar−1
Z

2
00 . . .) . (10.63)

For example, forSO(7) rep (102) we have

(102) → (1010 . . .) = . (10.64)

For orthogonal groups, the Levi-Civita tensor can be used toconvert a long column
of k boxes into a short column of(2r+1−k) boxes. The highest column that cannot
be shortened by this procedure hasr boxes, wherer is the rank ofSO(2r + 1).

For SO(2r) reps, the last two Dynkin labels are spinor roots
(a1a2 . . . ar−2Y Z). Tensor reps haveY + Z = even. However, as spinors are
complex, tensor reps can also be complex, conjugate reps being related by

(a1a2 . . . Y Z) = (a1a2 . . . ZY )∗ . (10.65)

ForZ ≥ Y , Z + Y even, the corresponding Young tableau is given by

(a1a2 . . . ar−2Y Z) → (a1a2 . . . ar−2
Z − Y

2
00 . . .) . (10.66)

The Levi-Civita tensor can be used to convert long columns into short columns. For
columns ofr boxes, the Levi-Civita tensor splitsO(2r) reps into conjugate pairs of
SO(2r) reps.

We find the formula of King [191] and Murtaza and Rashid [252] the most con-
venient among various expressions for the dimensions ofSO(n) tensor reps given
in the literature. If the Young tableauλ is represented as in section9.3, the list of the
row lengths[λ1, λ2, . . . λκ], then the dimension of the correspondingSO(n) rep is
given by

dλ =
dS
p!

k∏

i=1

(λi + n− k − i− 1)!

(n− 2i)!

k∏

j=1

(λi + λj + n− i− j) . (10.67)

Herep is the total number of boxes, anddS is the dimension of the symmetric group
rep computed in (9.16). ForSO(2r) andκ = r, this rep is reducible and splits into
a conjugate pair of reps. For example,

d =
1

1
3 1

· (n+ 2)n(n− 2) =
n(n2 − 4)

3

d
=

(n+ 2)n(n− 1)(n− 3)

8

d =
(n+ 2)(n+ 1)n(n− 3)

12
, (10.68)
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in agreement with (10.55). Even though the Dynkin labels distinguishSO(2r + 1)
fromSO(2r) reps, this distinction is significant only for the spinor reps. The tensor
reps ofSO(n) have the same Young tableaux for the even and the oddn’s.
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Chapter Eleven

Spinors

P. Cvitanović and A. D. Kennedy

In chapter10 we have discussed the tensor reps of orthogonal groups. However,
the spinor reps ofSO(n) also play a fundamental role in physics, both as reps of
space-time symmetries (Pauli spin matrices, Dirac gamma matrices, fermions in
D-dimensional supergravities), and as reps of internal symmetries(SO(10) grand
unified theory, for example). In calculations of radiative corrections, the QED spin
traces can easily run up to traces of products of some twelve gamma matrices [195],
and efficient evaluation algorithms are of great practical importance. A most straight-
forward algorithm would evaluate such a trace in some11!! = 11·9·7·5·3≃ 10, 000
steps. Even computers shirk such tedium. A good algorithm, such as the ones we
shall describe here, will do the job in some62 ≃ 100 steps.

Spinors came to Cartan [43] as an unexpected fruit of his labors on the complete
classification of reps of the simple Lie groups. Dirac [95] rediscovered them while
looking for a linear version of the relativistic Klein-Gordon equation. He introduced
matricesγµ, which were required to satisfy

(p0γ0 + p1γ1 + . . .)2 = (p20 − p21 − p22 − . . .) . (11.1)

Forn = 4 he constructedγ’s as[4×4] complex matrices. ForSO(2r) andSO(2r+
1) γ-matrices were constructed explicitly as[2r×2r] complex matrices by Weyl and
Brauer [346].

In the early days, such matrices were taken as a literal truth, and Klein and
Nishina [196] are reputed to have computed their celebrated Quantum Electrody-
namics crosssection by multiplyingγ-matrices by hand. Every morning, day after
day, they would multiply away explicit [4×4] γµ matrices and sum overµ’s. In the
afternoon, they would meet in the cafeteria of the Niels BohrInstitute to compare
their results.

Nevertheless, all information that is actually needed for spin traces evaluation
is contained in the Dirac algebraic condition (11.1), and today the Klein-Nishina
trace over Diracγ’s is a textbook exercise, reducible by several applications of the
Clifford algebra condition onγ-matrices:

{γµ, γν} = γµγν + γνγµ = 2gµν 1 . (11.2)

Iterative application of this condition immediately yields a spin traces evaluation
algorithm in which the only residue ofγ-matrices is the normalization factortr 1.
However, this simple algorithm is inefficient in the sense that it requires a com-
binatorially large number of evaluation steps. The most efficient algorithm on the
market (for anySO(n)) appears to be the one given by Kennedy [185, 81]. In
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Kennedy’s algorithm, one views the spin trace to be evaluated as a3n-j coefficient.
Fierz [120] identities are used to express this3n-j coefficient in terms of6-j coef-
ficients (see section11.3). Gamma matrices are[2n/2×2n/2] in even dimensions,
[2(n−1)/2×2(n−1)/2] in odd dimensions, and at first sight it is not obvious that a
smooth analytic continuation in dimension should be possible for spin traces. The
reason why the Kennedy algorithm succeeds is that spinors are really not there at
all. Their only role is to restrict theSO(n) Clebsch-Gordan series to fully anti-
symmetric reps. The corresponding3-j and6-j coefficients are relatively simple
combinatoric numbers, with analytic continuations in terms of gamma functions.
The case of four spacetime dimensions is special because of the reducibility of
SO(4) to SU(2)⊗ SU(2). Farrar and Neri [115], who as of April 18, 1983, have
computed in excess of 58,149 Feynman diagrams, have used this structure to de-
velop a very efficient method for evaluatingSO(4) spinor expressions. An older
technique, described here in section11.8, is the Kahane [178] algorithm, which
implements diagrammatically the Chisholm [55] identities. REDUCE, an algebra
manipulation program written by Hearn [159], uses the Kahane algorithm. Thörn-
blad [324] has usedSO(4) ⊂ SO(5) embedding to speedup evaluation of traces
for massive fermions.

This chapter is based on ref. [81].

11.1 SPINOGRAPHY

Kennedy [185] introduced diagrammatic notation forγ-matrices

(γµ)ab=

��
��
��

��
��
��

a

µ

b

, a, b = 1, 2, . . . , 2n/2 or 2(n−1)/2

1ab= ��
��
��

��
��
��

a b, µ = 1, 2, . . . , n

tr1=
��
��
��

��
��
��

. (11.3)

In this context, birdtracks go under the name “spinography.” For notational simplic-
ity, we take allγ-indices to be lower indices and omit arrows on then-dimensional
rep lines. Then-dimensional rep is drawn by a solid directed line to conformto the
birdtrack notation of chapter4. For QED and QCD spin traces, one might prefer the
conventional Feynman diagram notation,

(γµ)ab =

����
��
��
��
��a b

µ
,

where the photons/gluons are in then-dimensional rep ofSO(3, 1), and electrons are
spinors. We eschew such notation here, as it would conflict with SO(n) birdtracks
of chapter10. The Clifford algebra anticommutator condition (11.2) is given by

��
��
��

��
��
��

νµ

=

��
��
��

��
��
��

µ ν

. (11.4)
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For antisymmetrized products ofγ-matrices, this leads to the relation

���������������
���������������
���������������

���������������
���������������
���������������

��
��
��
��

p1 2 3
...

...
=

��������������
��������������
��������������
��������������

��
��
��
��

...
1 2 p

...
+ (p− 1)

���������������
���������������
���������������

���������������
���������������
���������������

...
��
��
��
��

1 2 p
...

(11.5)

(we leave the proof as an exercise). Hence, any product ofγ-matrices can be ex-
pressed as a sum over antisymmetrized products ofγ-matrices. For example, sub-
stitute the Young projection operators from figure9.1 into the products of two and
threeγ-matrices and use the Clifford algebra (11.4):

��
��
��

��
��
��

=
������������
������������
������������

������������
������������
������������

��
��
��

��
��
��

+

��
��
��

��
��
��

(11.6)
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=
�������
�������
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�������
�������
�������
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��

��
��
��

+

��
��
��

��
��
��

=
������������
������������
������������

������������
������������
������������

��
��
��

��
��
��

+

{

��
��
��

��
��
��

−
��
��
��

��
��
��

+

��
��
��

��
��
��

}
, etc.. (11.7)

Only the fully antisymmetrized products ofγ’s are immune to reduction by (11.4).
Hence, the antisymmetric tensors

Γ(0) = 1 =
��
��
��

��
��
�� =

��
��
��

��
��
��

0

Γ
(1)
µ = γµ =

��
��
��

��
��
��

µ

=
��
��
��

��
��
��

1

Γ
(2)
µν = 1

2 [γµ, γν ] = ������������
������������
������������

������������
������������
������������

��
��
��

��
��
��

νµ

=
��
��
��

��
��
��

2

Γ
(3)
µνσ = γ[µγνγσ] = ������������

������������
������������

������������
������������
������������

��
��
��

��
��
��

ν σµ

=
��
��
��

��
��
��

3

Γ
(a)
µ1ν2...µa = γ[µ1

γµ2
. . . γµa] =

1

��
��
��
��

��������������
��������������
��������������

��������������
��������������
��������������

µ a
...

...

... µ

=
��
��
��

��
��
��

a

(11.8)

provide a complete basis for expanding products ofγ-matrices. Applying the anti-
commutator (11.4) to a string ofγ’s, we can move the firstγ all the way to the right
and obtain

��
��
��
��

=2

��
��
��
��

−
��
��
��
��

=2

��
��
��
��

− 2

��
��
��
��

+ (−1)2

��
��
��
��

= . . . (11.9)

1

2

(

��
��
��
��

��
��
��
��

...

1 2 3 p

+ (−1)p

��
��
��

��
��
��

...
1 2 3 p )

=
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��
��
��
��

... −
��
��
��
��

... + · · ·+ (−1)p

��
��
��
��

...

1

2
(γµ1γµ2 . . . γµp ± γµ2 . . . γµpγµ1)=

gµ1µ2γµ3 . . . γµp − gµ1µ3γµ2γµp + . . . (11.10)

This identity has three immediate consequences:

(i) Traces of odd numbers ofγ’s vanish forn even.

(ii) Traces of even numbers ofγ’s can be evaluated recursively.

(iii) The result does not depend on the direction of the spinor line.

According to (11.10), anyγ-matrix product can be expressed as a sum of terms
involvinggµν ’s and the antisymmetric basis tensorsΓ(a), so in order to prove (i) we
need only to consider traces ofΓ(a) for a odd. This may be done as follows:

n

�������������
�������������
�������������
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�������������

a...1
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= (2a− n)
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⇒ (n− a)
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a...1

������ = 0 . (11.11)

In the third step we have used (11.10) and the fact thata is odd. Hence,tr Γ(a)

vanishes for all odda if n is even. Ifn is odd,tr Γ(n) does not vanish because by
(6.28),
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������������������

������������������
������������������
������������������

������������������
������������������
������������������

������������������
������������������
������������������
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...

. (11.12)

Then-dimensional analogue of theγ5,

εµν...σγµγν . . . γσ , (11.13)

commutes with allγ-matrices, and, by Schur’s lemma, it must be a multiple of the
unit matrix, so it cannot be traceless. This proves (i). (11.10) relates traces of length
p to traces of lengthp− 2, so (ii) gives

��
��
��

��
��
��

νµ =
��
��
��

��
��
��

νµ
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tr γµγν =(tr 1) gµν , (11.14)

��
��
��

��
��
��

ν ρ

σµ

=
��
��
��

��
��
�� {

ρ

µ σ

ν

−
µ σ

ρν

+

µ σ

ρν

}

tr γµγνγργσ=tr 1 {gµνgρσ − gµρgνσ + gµνgνρ} , (11.15)

��
��
��
��

=
��
��
��

��
��
�� {

− + −

+ − + −

+ − + −

+ − +

}
, etc.

(11.16)

The result is always the(2p − 1)!! ways of pairing2p indices withp Kronecker
deltas. It is evident that nothing depends on the direction of spinor lines, as spinors
are remembered only by an overall normalization factortr 1. The above identities
are in principle a solution of the spinor traces evaluation problem. In practice they
are intractable, as they yield a factorially growing numberof terms in intermediate
steps of trace evaluation.

11.2 FIERZING AROUND

The algorithm (11.16) is too cumbersome for evaluation of traces of more than
four or six γ-matrices. A more efficient algorithm is obtained by going totheΓ
basis (11.8). Evaluation of traces of two and threeΓ’s is a simple combinatoric
exercise using the expansion (11.16). Any term in which a pair ofgµν indices gets
antisymmetrized vanishes:

������������������
������������������
������������������
������������������

...
= 0 . (11.17)

That implies thatΓ’s areorthogonal:

a b
��
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��

= δab a!
��
��
��

��
��
��

a . (11.18)

Herea! is the number of terms in the expansion (11.16) that survive antisymmetriza-
tion (11.18). A trace of threeΓ’s is obtained in the same fashion:
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(b + c− a) , t =

1

2
(c+ a− b) , u =

1

2
(a+ b− c) .
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As theΓ’s provide a complete basis, we can express a product of twoΓ matrices as
a sum overΓ’s, with the extra indices carried bygµν ’s. From symmetry alone we
know that terms in this expansion are of the form
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∑
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. (11.19)

The coefficientsCm can be computed by tracing both sides withΓc and using the
orthogonality relation (11.18):
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We do not have to consider traces of four or moreΓ’s, as they can all be reduced to
three-Γ traces by the above relation.

Let us now streamline the birdtracks. The orthogonality ofΓ’s (11.18) enables us
to introduce projection operators

(Pa)cd,ef =
1

a! tr1

(
γ[µ1

γµ2
· · · γµa]

)
ab
(γµa . . . γµ2γµ1)cd
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. (11.21)

The factor oftr 1on the left-handside is a convenient (but inessential) normalization
convention. It is analogous to the normalization factora in (4.29):
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ba
= (tr 1)δab

a
. (11.22)

With this normalization, each spinor loop will carry factor(tr 1)−1, and the final
results will have notr 1 factors.a, b, . . . are rep labels, not indices, and the repeated
index summation convention does not apply. Only the fully antisymmetricSO(n)
reps occur, so a single integer (corresponding to the numberof boxes in the single
Young tableau column) is sufficient to characterize a rep.

For the trivial and the singleγ-matrix reps, we shall omit the labels,
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in keeping with the original definitions (11.3). The 3-Γ trace (11.19) defines a 3-
vertex
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a b
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c

a b

(11.24)
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that is nonzero only ifa + b + c is even, and ifa, b, andc satisfy the triangle
inequalities|a− b| ≤ c ≤ |a+ b|. We apologize for usinga, b, c both for theSO(n)
antisymmetric representations labels, and for spinor indices in (11.3), but the Latin
alphabet has only so many letters. It is important to note that in this definition the
spinor loop runs anticlockwise, as this vertex can change sign under interchange of
two legs. For example, by (11.19),
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This vertex couples three adjoint representations (10.13) of SO(n), and the sign
rule is the usual rule (4.46) for the antisymmetry ofCijk constants. The general sign
rule follows from (11.19):
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c

. (11.26)

The projection operatorsPa (11.21) satisfy the completeness relation (5.8):
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a . (11.27)

This follows from the completeness ofΓ’s, used in deriving (11.20). We have already
drawn the left-hand side of (11.20) in such a way that the completeness relation
(11.27) is evident:
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.

In terms of the vertex (11.24) we get
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a b

=
∑

c
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a b

c
. (11.28)

In this way we can systematically replace a string ofγ-matrices by trees of 3-vertices.
Before moving on, let us check the completeness ofPa. Pa projects spinor

⊗ antispinor→ antisymmetrica-index tensor rep ofSO(n). Its dimension was
computed in (6.21):

da = trPa =
1

tr 1
a =

a

=

(
n

a

)
. (11.29)
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da is automatically equal to zero forn < a; this guarantees the correctness of treating
(11.28) as an arbitrarily large sum, even though for a givenn it terminates ata = n.
Tracing both sides of the completeness relation (11.27), we obtain a dimension sum
rule:

(tr 1)2 =
∑

a

da =
n∑

a=0

(
n

a

)
= (1 + 1)n = 2n . (11.30)

This confirms the results of Weyl and Brauer [346]: for even dimensions the number
of components is2n, soΓ’s can be represented by complex[2n/2×2n/2] matrices.
For odd dimensions there are two inequivalent spinor reps represented by[2(n−1)/2×
2(n−1)/2] matrices (see section11.7). This inessential complication has no bearing
on the evaluation algorithm we are about to describe.

11.2.1 Exemplary evaluations

What have we accomplished? Iterating the completeness relation (11.28) we can
makeγ-matrices disappear altogether, and spin trace evaluationreduces to combi-
natorics of 3-vertices defined by the right-hand side of (11.19). This can be done,
but is it any quicker than the simple algorithm (11.16)? The answer is yes: high
efficiency can be achieved by viewing a complicated spin trace as a3n-j coefficient
of section5.2. To be concrete, take an eightγ-matrix trace as an example:

tr(γµγνγαγβγ
νγµγβγα) =

��
��
��

��
��
��

. (11.31)

Such a3n-j coefficient can be reduced by repeated application of the recoupling
relation (5.13)
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In the present context this relation is known as the Fierz identity [120]. It follows
from two applications of the completeness relation, as in (5.13). Now we can redraw
the12-j coefficient from (11.31) and fierz on

��
��
��
��

=
∑

b




����
����
����

����
����
����

b

��
��
��

��
��
�� 2

db




2

��
��
��
��

��
��
��
��

b
��
��
��

��
��
��

=
∑

b




����
����
����

����
����
����

b

��
��
��

��
��
��

db




2

�������� b
. (11.33)
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Another example is the reduction of a vertex diagram, a special case of the Wigner-
Eckart theorem (5.24):
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As the final example we reduce a trace of ten matrices:

���
���
���
���

=
��
��
��

��
��
��

=
∑

b,c

����
����
����

����
����
����

b

����
����
����

����
����
����

c

��
��
��

��
��
�� 4

dbdc

��
��
��
��

��
��
��
��

��
��
��
��

cb

=
∑

b,c,d

����
����
����

����
����
����

b

����
����
����

����
����
����

c

��
��
��

��
��
�� 5

dbdc

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

b c
d

=
∑

b,c,d

����
����
����

����
����
����

b

����
����
����

����
����
����

c

��
��
��

��
��
��

dbdc
���� ����

����

����b c

d

=
∑

b,c,d

(−1)d/2

dbdc
��
��
��

��
��
�� ����

����
����

����
����
����

b

����
����
����

����
����
����

c ���� ����

����

����

b cd . (11.35)

In this way, any spin trace can be reduced to a sum over6-j and3-j coefficients.
Our next task is to evaluate these.

11.3 FIERZ COEFFICIENTS

The3-j coefficient in (11.33) can be evaluated by substituting (11.19) and doing
“some” combinatorics

����

����

cba =
a!b!c!

(s!t!u!)2 u

s
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s

t

t

u
=

1

s!t!u!

n!

(n− s− t− u)!
. (11.36)

s, t, u are defined in (11.19). Note thata+ b+ c = 2(s+ t+ u), anda+ b + c is
even, otherwise the traces in the above formula vanish.

The6-j coefficients in the Fierz identity (11.32) are not independent of the above
3-j coefficients. Redrawing a6-j coefficient slightly, we can apply the completeness
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relation (11.28) to obtain

����
����
����

����
����
����

a

b

= ������

b

a
=

1

��
��
��
��

∑

c

���
���
���

���
���
���

����
����
����

����
����
����

c

b

a

.

Interchangingj andk by the sign rule (11.26), we express the6-j coefficient as a
sum over3-j coefficients:
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Using relationst = a− u, s = b− u, a+ t+ u = a+ b− u, we can replace [48]
the sum overc by the sum overu:
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. (11.38)

u ranges from0 to a or b, whichever is smaller, and the6-j’s for low values ofa are
particularly simple
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...

Kennedy [185] has tabulated Fierz coefficients [120, 279, 279] Fbc, b, c ≤ 6. They
are related to6-j’s by
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b = (−1)bc
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c!

b∑
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(
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)(
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b− u

)
. (11.42)

11.4 6-j COEFFICIENTS

To evaluate (11.35) we need6-j coefficients for six antisymmetric tensor reps of
SO(n). Substitutions (11.24), (11.21), and (11.19) lead to a strand-network [281]



GroupTheory version 9.0.1, April 8, 2011

SPINORS 145

expression for a6-j coefficient,
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. (11.43)

Pick out a line in a strand, and follow its possible routes through the strand network.
Seven types of terms give nonvanishing contributions: four“mini tours”

, , , (11.44)

and three “grand tours”

, , . (11.45)

Let the numbers of lines in different tours bet1, t2, t3, t4, t5, t6 andt7. A nonvan-
ishing contribution to the6-j coefficient (11.43) corresponds to a partition of twelve
strands,s1, s2, . . . , s12 into seven tourst1, t2, . . . , t7

M(t1) = 1t
5t

4t 3t

t2

t7 6t (11.46)

Comparing with (11.43), we see that eachsi is a sum of twoti’s: s1 = t2 + t7,
s2 = t1 + t7, etc.It is sufficient to specify onet1; this fixes allti’s. Now one stares
at the above figure and writes down

M(t1) =

(
n

t

)
t!

∏7
i=1 ti!

∏12
i=1 si!∏7
j=1 aj !

, t = t1 + t2 + . . .+ t7 (11.47)

(a well-known theorem states that combinatorial factors cannot be explained [162]).
The(nt ) factor counts the number of ways of coloringt1 + t2 + . . .+ t7 lines with
n different colors. The second factor counts the number of distinct partitions oft
lines into seven strandst1, t2 . . . , t7. The last factor again comes from the projector
operator normalizations and the number of ways of coloring each strand and cancels
against the corresponding factor in (11.43). Summing over the allowed partitions
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(for example, taking0 ≤ t1 ≤ s2), we finally obtain an expression for the6-j
coefficients:

6 a5

a4

a1

a
a

3

2

a

=
∑

t

(
n

t

)
t!

t1!t2!t3!t4!t5!t6!t7!

t1 = −a1 + a2 + a3
2

+ t t5 =
a1 + a3 + a4 + a6

2
− t

t2 = −a1 + a5 + a6
2

+ t t6 =
a1 + a2 + a4 + a5

2
− t

t3 = −a2 + a4 + a6
2

+ t t7 =
a2 + a3 + a5 + a6

2
− t

t4 = −a3 + a4 + a5
2

+ t . (11.48)

The summation in (11.48) is over all values oft, such that all theti are nonnegative
integers. The3-j (11.36) is a special case of the6-j (11.48). The3-j’s and6-j’s
evaluated here, for all reps antisymmetric, should suffice in most applications.

The above examples show how Kennedy’s method produces then-dimensional
spinor reductions needed for the dimensional regularization [161]. Its efficiency pays
off only for longer spin traces. Eachγ-pair contraction produces one6-j symbol,
and the completeness relation sums do not exceed the number of pair contractions,
so for2p γ-matrices the evaluation does not exceedp2 steps. This is far superior to
the initial algorithm (11.16).

Finally, a comment directed at the reader wary of analytically continuing inn
while relying on completeness sums (de Wit and ’t Hooft [94, 304] anomalies).
Trouble could arise if, as we continued to lown, thek > n terms in the completeness
sum (11.27) gave nonvanishing contributions. We have explicitly noted that the
dimension,3-j and6-j coefficients do vanish for any rep ifk > n. The only danger
arises from the Fierz coefficients (11.32): a ratio of6-j andd can be finite forj > n.
However, one is saved by the projection operator in the Fierzidentity (11.32). This
projection operator will eventually end up in some6-j or 3-j coefficient withoutd
in the denominator (as in (11.33)), and the whole term will vanish fork > j.

11.5 EXEMPLARY EVALUATIONS, CONTINUED

Now that we have explicit formulas for all3-j and6-j coefficients, we can complete
the evaluation of examples commenced in section11.2.1. The eightγ-matrix trace
(11.33) is given by
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and the tenγ-matrix trace (11.35) by
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11.6 INVARIANCE OF γ-MATRICES

The above discussion of spinors did not follow the systematic approach of section3.4
that we employ everywhere else in this monograph: start witha list of primitive in-
variants, find the characteristic equations they satisfy, construct projection operators,
and identify the invariance group. In the present case, the primitive invariants are
gµν , δab and(γµ)ab. We could retroactively construct the characteristic equation for
Qab,cd = (γµ)ad(γµ)cb from the Fierz identity (11.32), but the job is already done
and then eigenvalues are given by (11.38)–(11.41). The only thing that we still need
to do is check thatSO(n), the invariance group ofgµν , is also the invariance group
of (γµ)ab.

TheSO(n) Lie algebra is generated by the antisymmetric projection operator
(8.7), or Γ(2) in theγ-matrix notation (11.8). The invariance condition (4.36) for
γ-matrices is
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To check whetherΓ(2) respects the invariance condition, we evaluate the first and
the term by means of the completeness relation (11.28):
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The minus sign comes from the sign rule (11.26). Subtracting, we obtain
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This already has the form of the invariance condition (11.51), modulo normalization
convention. To fix the normalization, we go back to definitions (11.8), (11.24),
(11.19):
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The invariance condition (11.51) now fixes the relative normalizations of generators
in then-dimensional and spinor rep. If we take (8.7) for then-dimensional rep
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then the normalization of the generators in the spinor rep is

(Tµν)ab =
1

4
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b

µν

a

=
1

8
[γν , γµ] . (11.54)

Theγ-matrix invariance condition (11.51) written out in the tensor notation is

[Tµν , γσ] =
1

2
(gµσγν − gνσγµ) . (11.55)

If you prefer generators(Ti)ab indexed by the adjoint rep indexi = 1, 2, . . . , N,
then you can use spinor rep generators defined as

(Ti)ab =
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. (11.56)

Now we can compute various casimirs for spinor reps. For example, the Dynkin
index (section7.5) for the lowest-dimensional spinor rep is given by
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2
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. (11.57)

From the invariance ofγµ follows invariance of allΓ(k). In particular, the invari-
ance condition forΓ(2) is the usual Lie algebra condition (4.47) with the structure
constants given by (11.25).

11.7 HANDEDNESS

Among the bases (11.8),Γ(n)
µ1µ2...µn is special; it projects onto a 1-dimensional space,

and the antisymmetrization can be replaced by a pair of Levi-Civita tensors (6.28):
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. (11.58)

The corresponding clebsches are the generalized “γ5” matrices,

γ∗ ≡ 1√
n!
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... = in(n−1)/2γ1γ2 . . . γn . (11.59)
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The phase factor is, as explained in section4.8, only a nuisance that cancels away
in physical calculations.γ∗ satisfies a trivial characteristic equation (use (6.28) and
(11.18) to evaluate this),

(γ∗)2 =
1

n!

����������������
����������������
����������������
����������������

��
��
��
��

����������������
����������������
����������������
����������������

...... =
1

n!
���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��

...... = 1 , (11.60)

which yields projection operators (4.18):

P+ =
1

2
(1+ γ∗) , P− =

1

2
(1− γ∗) . (11.61)

The reducibility of Dirac spinors does not affect the correctness of the Kennedy
spin traces algorithm. However, this reduction of Dirac spinors is of physical interest,
so we briefly describe the irreducible spinor reps. Let us denote the two projectors
diagrammatically by

1=P+ +P−

��
��
��

��
��
�� =

+
+ . (11.62)

In even dimensionsγµγ∗ = −γ∗γµ, while in odd dimensionsγµγ∗ = γ∗γµ, so

n even:





γµP+ = P−γµ

+
=

, (11.63)

n odd:





γµP+ = P+γµ

+
=

+

. (11.64)

Hence, in the odd dimensions Diracγµ matrices decompose into a pair of conjugate
[2(n−1)/2×2(n−1)/2] reps:

n odd: γµ = P+γµP+ +P−γµP− , (11.65)

and the irreducible spinor reps are of dimension2(n−1)/2.

11.8 KAHANE ALGORITHM

For the case of four dimensions, there is a fast algorithm fortrace evaluation, due
to Kahane [178].

Consider aγ-matrix contraction,

γaγbγc . . . γdγa =
...

��
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�� , (11.66)

and use the completeness relation (11.27) and the “vertex” formula (11.34):
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��
��

...
=
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��
��
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b

...
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=
1
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��
��
��

∑

b

b

��
��
��
��

db
��
��
��
��

���
���
���

���
���
���

b

...

. (11.67)

For n = 4, this sum ranges overk = 0, 1, 2, 3, 4. A spinor trace is nonvanishing
only for even numbers ofγ’s, (11.16), so we distinguish the even and the odd cases
when substituting the Fierz coefficients (11.40):
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odd

... =− 2
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��
��
��

{
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��

...
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����
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���� −
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...

3
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}
, (11.68)
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even

... =
4
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��
��

{
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��

...
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��

−
��
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��
��

...

4
����
����
����

����
����
����

}
. (11.69)

The sign of the second term in (11.68) can be reversed by transposing the three
γ’s (remember, the arrows on the spinor lines keep track of signs,cf. (11.24) and
(11.26)):
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. (11.70)

But now the term in the brackets in (11.68) is just the completeness sum (11.27),
and the summation can be dropped:
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odd

... = − 2
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��

...

���
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��� +
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...

3
���
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}
,

Rule 1: ...

��
��
��
��

= −2

...

��
��
��
��

γaγbγc . . . γdγa = −2 γd . . . γcγb

(11.71)

The same trick does not work for (11.69), because there the completeness sum has
three terms:
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... =
1

��
��
��
��

{ ...

+

...

2
+

...

4

}
. (11.72)
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However, asγ[aγb] = − γ[bγa]
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= −
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��
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��

, (11.73)

the sum ofγaγb . . . γd and its transposeγd . . . γbγa has a two-term completeness
sum:
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}
. (11.74)

Finally, we can change the sign of the second term in (11.69) by using{γ5, γa} = 0;

Rule 2:

��
��
��

��
��
��

even

... =2

{

��
��
��

��
��
��

...
+

...

��
��
��
��

}

γeγaγb . . . γcγdγe =2 {γdγaγb . . . γc + γc . . . γbγaγd} . (11.75)

This rule and rule (11.71) enable us to removeγ-contractions (“internal photon
lines”) one by one, at most doubling the number of terms at each step. These rules
are special ton = 4 and have non-dimensional generalization.
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Chapter Twelve

Symplectic groups

Symplectic groupSp(n) is the group of all transformations that leave invariant a
skew symmetric(p, q) = fabp

aqb:

fab=− fba a, b = 1, 2, . . . n

������
ba
=− ������ n even. (12.1)

The birdtrack notation is motivated by the need to distinguish the first and the second
index: it is a special case of the birdtracks for antisymmetric tensors of even rank
(6.57). If (p, q) is an invariant, so is its complex conjugate(p, q)∗ = f bapaqb, and

fab=− f ba

������
ba
=− ������ (12.2)

is also an invariant tensor. The matrixAb
a = facf

cb must be proportional to unity, as
otherwise its characteristic equation would decompose thedefiningn-dimensional
rep. A convenient normalization is

facf
cb=− δba

���
���
���
���

���
���
���
��� =− ������

���
���
���
��� = − . (12.3)

Indices can be raised and lowered at will, so the arrows on lines can be dropped.
However, omitting symplectic invariants (the black triangles) is not recommended,
as without them it is hard to keep track of signs. Our convention will be to perform
all contractions withfab and omit the arrows but not the symplectic invariants:

fab = ���
���
���
���

a b
. (12.4)

All other tensors will have lower indices. The Lie group generators(Ti)a
b will be

replaced by

(Ti)ab = (Ti)a
cfcb = ���

���
���
��� . (12.5)

The invariance condition (4.36) for the symplectic invariant tensor is

���
���
���
��� + ������ =0

(Ti)acfcb + fac(Ti)cb=0 . (12.6)

A skew-symmetric matrixfab has the inverse in (12.3) only if det f 6= 0. That is
possible only in even dimensions [121, 144], soSp(n) can be realized only for even
n.
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In this chapter we shall outline the construction ofSp(n) tensor reps. They are
obtained by contracting the irreducible tensors ofSU(n)with the symplectic invari-
antfab and decomposing them into traces and traceless parts. The representation
theory forSp(n) is analogous in step-by-step fashion to the representationtheory
for SO(n). This arises because the two groups are related by supersymmetry, and
in chapter13 we shall exploit this connection by showing that all group-theoretic
weights for the two groups are related by analytic continuation into negative dimen-
sions.

12.1 TWO-INDEX TENSORS

The decomposition goes the same way as forSO(n), section10.1. The matrix (10.8),
given by

T =
��
��
��
��

��
��
��
�� , (12.7)

satisfies the same characteristic equation (10.9) as forSO(n). Now T is antisym-
metric,AT = T , and only the antisymmetric subspace gets decomposed.Sp(n)
2-index tensors decompose as

singlet: (P1)ab,cd = 1
nfabfcd = 1

n ��
��
��
��

��
��
��
��

antisymmetric: (P2)ab,cd = 1
2 (fadfbc − facfbd)− 1

nfabfcd

=
���
���
���
���

���
���
���
���

− 1
n ��

��
��
��

��
��
��
��

symmetric: (P3)ab,cd = 1
2 (fadfbc + facfbd) =

���
���
���
���

���
���
���
���

.

(12.8)

TheSU(n) adjoint rep (10.14) is now split into traceless symmetric and antisym-
metric parts. The adjoint rep ofSp(n) is given by the symmetric subspace, as only
P3 satisfies the invariance condition (12.6):

��
��
��
��

��
��
��
��

������

+
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��
��
��
��

������

= 0 .

Hence, the adjoint rep projection operator forSp(n) is given by

1

a
���
���
���
���

���
���
���
��� =
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���
���
���

���
���
���
���

. (12.9)

The dimension ofSp(n) is

N = trPA =

���
���
���
���

������

������

������

=
n(n+ 1)

2
. (12.10)
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Young tableaux ⊗ = • + +

Dynkin labels (10 . . .)× (10 . . .) = (00 . . .) + (010 . . .) + (20 . . .)

Dimensions n2 = 1 + n(n+1)
2

+ (n−2)(n+1)
2

Dynkin indices 2n
n+2

= 0 + 1 + n−2
n+2

Projectors = 1
n ��

��
��
��

��
��
��
�� +

���
���
���
���

���
���
���
���

+

{

���
���
���
���

���
���
���
���

− 1
n ��

��
��
��

��
��
��
��

}

Table 12.1Sp(n) Clebsch-Gordan series forV ⊗V .

Remember that all contractions are carried out byfab — hence the symplectic
invariants in the trace expression. Dimensions of the otherreps and the Dynkin
indices (see section7.5) are listed in table12.1.

We could continue as for theSO(n)case, withA⊗V ,V⊗V⊗V , · · ·decompositions,
but that would turn out to be a step-by-step repetition of chapter10. As we shall show
next, reps ofSO(n) andSp(n) are related by a “negative dimensional” duality, so
there is no need to work out theSp(n) reps separately.
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Chapter Thirteen

Negative dimensions

P. Cvitanović and A. D. Kennedy

A cursory examination of the expressions for the dimensionsand the Dynkin indices
listed in tables7.3and7.5, and in the tables of chapter9, chapter10, and chapter12,
reveals intriguing symmetries under substitutionn → −n. This kind of symmetry is
best illustrated by the reps ofSU(n); if λ stands for a Young tableau withp boxes,
andλ for the transposed tableau obtained by flippingλ across the diagonal (i.e.,
exchanging symmetrizations and antisymmetrizations), then the dimensions of the
correspondingSU(n) reps are related by

SU(n) : dλ(n) = (−1)pdλ(−n) . (13.1)

This is evident from the standard recipe for computing theSU(n) rep dimensions
(section9.3), as well as from the expressions listed in the tables of chapter9. In all
cases, exchanging symmetrizations and antisymmetrizations amounts to replacing
n by−n.

Here we shall prove the following:

Negative Dimensionality Theorem 1: For anySU(n) invariant scalar exchanging
symmetrizations and antisymmetrizations is equivalent toreplacingn by−n:

SU(n) = SU(−n) . (13.2)

Negative Dimensionality Theorem 2: For anySO(n) invariant scalar there exists
the correspondingSp(n) invariant scalar (and vice versa), obtained by exchanging
symmetrizations and antisymmetrizations, replacing theSO(n) symmetric bilinear
invariantgab by theSp(n) antisymmetric bilinear invariantfab, and replacingn by
−n:

SO(n) = Sp(−n) , Sp(n) = SO(−n) . (13.3)

The bars onSU , Sp, SO indicate interchange of symmetrizations and antisym-
metrizations. In chapter14we shall extend the relation (13.3) to spinorial represen-
tations ofSO(n).

Such relations are frequently noted in literature: Parisi and Sourlas [270] have
suggested that a Grassmann vector space of dimensionn can be interpreted as an
ordinary vector space of dimension−n. Penrose [281] has introduced the term
“negative dimensions” in his construction ofSU(2) ≃ Sp(2) reps asSO(−2).
King [191] has proved that the dimension of any irreducible rep ofSp(n) is equal
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to that ofSO(n) with symmetrizations exchanged with antisymmetrizations(the
transposed Young tableau), andn replaced by−n. Mkrtchyan [245] has observed
this relation for theQCD loop equations. With the advent of supersymmetries,
n → −n relations have become commonplace, as they are built into the structure of
groups such as the orthosymplectic groupOSp(b, f). For developments up to 2010,
consult ref. [246].

Various examples ofn → −n relations cited in the literature are all special
cases of the theorems that we now prove. The birdtrack proof is simpler than the
published proofs for the special cases. Some highly nontrivial examples ofn → −n
symmetries for the exceptional groups [78] will be discussed in chapter18 and
chapter20, where we show that the negative-dimensional cousins ofSO(4) are
E7(56),D6(32), · · ·, and that forSU(3) then→ −nsymmetry leads toE6(27), · · ·.

13.1 SU(n) = SU(−n)

As we have argued in section5.2, all physical consequences of a symmetry (rep
dimensions, level splittings,etc.) can be expressed in terms of invariant scalars. The
primitive invariant tensors ofSU(n)are the Kronecker tensorδab and the Levi-Civita
tensorǫa1···an

. All other invariants ofSU(n) are built from these two objects. A
scalar (3n-j coefficient, vacuum bubble) is a tensor object with all indices contracted,
which in birdtrack notation corresponds to a diagram with noexternal legs. Thus, in
scalars, Levi-Civita tensors can appear only in pairs (the lines must end somewhere),
and by (6.28) the Levi-Civita tensors combine to antisymmetrizers. Consequently
SU(n) invariant scalars are all built only from symmetrizers and antisymmetrizers.
Expanding all symmetry operators in anSU(n) vacuum bubble gives a sum of
entangled loops. Each loop is worthn, so each term in the sum is a power ofn, and
therefore anSU(n) invariant scalar is a polynomial inn.

The idea of the proof is illustrated by the following typicalcomputation: evaluate,
for example, theSU(n) 9-j coefficient for recoupling of three antisymmetric rank-2
reps:
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+
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���
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���
���

=n3 − n2 − n2 + n− n2 + n+ n− n2

=n(n− 1)(n− 3) . (13.4)

Notice that in the expansion of the symmetry operators the graphs with an odd
number of crossings give an even power ofn, and vice versa. If we change the
three symmetrizers into antisymmetrizers, the terms that change the sign are exactly
those with an even number of crossings. The crossing in the original graph that had
nothing to do with any symmetry operator, appears in every term of the expansion,
and thus does not affect our conclusion; an exchange of symmetrizations and anti-
symmetrizations amounts to substitutionn → −n. The overall sign is only a matter
of convention; it depends on how we define the vertices in the3n-j’s.

The proof for the generalSU(n) case is even simpler than the above example:
Consider the graph corresponding to an arbitrarySU(n) scalar, and expand all its
symmetry operators as in (13.4). The expansion can be arranged (in any of many
possible ways) as a sum of pairs of form

. . .+ ������������ ±
���
���
���

���
���
���

���
���
���
���

+ . . . , (13.5)

with a plus sign if the crossing arises from a symmetrization, and a minus sign if
it arises from an antisymmetrization. The gray blobs symbolize the tangle of lines
common to the two terms. Each graph consists only of closed loops,i.e., a definite
power ofn, and thus uncrossing two lines can have one of two consequences. If the
two crossed line segments come from the same loop, then uncrossing splits this into
two loops, whereas if they come from two loops, it joins them into one loop. The
power ofn is changed by the uncrossing:

������������ = n
���
���
���

���
���
���

��
��
��
��

. (13.6)

Hence, the pairs in the expansion (13.5) always differ byn±1, and exchanging
symmetrizations and antisymmetrizations has the same effect as substitutingn →
−n (up to an irrelevant overall sign). This completes the proofof (13.2).

Some examples ofn → −n relations forSU(n) reps:

1. Dimensions of the fully symmetric reps (6.13) and the fully antisymmetric
reps (6.21) are related by the Beta-function analytic continuation formula

n!

(n− p)!
= (−1)p

(−n+ p− 1)!

(−n− 1)!
. (13.7)

2. The reps (9.13) and (9.14) correspond to the 2-index symmetric, antisymmet-
ric tensors, respectively. Therefore, their dimensions infigure9.1are related
by n → −n.
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3. The reps (9.79) and (9.80) (see also table7.5) are related byn → −n for the
same reason.

4. section9.9.

13.2 SO(n) = Sp(−n)

In addition toδab andεab...d, SO(n) preserves a symmetric bilinear invariantgab,
for which we have introduced open circle birdtrack notationin (10.1). Such open
circles can occur inSO(n) 3n-j graphs, flipping the line directions. The Levi-Civita
tensor still cannot occur, as directed lines, starting on anε tensor, would have to end
on ag tensor, that gives zero by symmetry.Sp(n) differs fromSO(n) by having a
skew-symmetricfab, for which we have introduced birdtrack notation in (12.1). In
Sp(n) we can convert a Levi-Civita tensor with upper indices into one with lower
indices by contracting withn f ’s, with the appropriate power ofdet f appearing.
We can therefore eliminate pairs of Levi-Civita tensors. A single Levi-Civita tensor
can still appear in anSp(n) 3n-j graph, but as
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���... = Pf(f) , (13.8)

wherePf(f) is the Pfaffian, andPf(f)2 = det f (that is left as an exercise for the
reader). Therefore a Levi-Civita can always be replaced by an antisymmetrization
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. (13.9)

For anySO(n) scalar there exists a correspondingSp(n) scalar, obtained by ex-
changing the symmetrizations and antisymmetrizationsand thegab’s andfab’s in
the corresponding graphs. The proof that the two scalars aretransformed into each
other by replacingn by −n, is the same as forSU(n), except that the two line
segments at a crossing could come from a new kind of loop, containing gab’s or
fab’s. In that case, equation (13.6) is replaced by
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. (13.10)

While now uncrossing the lines does not change the number of loops, changinggab’s
to fab’s does provide the necessary minus sign. This completes theproof of (13.3)
for the tensor reps ofSO(n) andSp(n).

Some examples ofSO(n) = Sp(−n) relations:

1. TheSO(n) antisymmetric adjoint rep (10.13) corresponds to theSp(n) sym-
metric adjoint rep (12.9).

2. Compare table12.1and table10.1. See table7.3, table7.4, and table7.2.
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3. Penrose [281] binors:SU(2) = Sp(2) = SO(−2).

In order to extend the proof to the spinor reps, we will first have to invent the
Sp(n) analog of spinor reps. We turn to this task in the next chapter.
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Chapter Fourteen

Spinors’ symplectic sisters

P. Cvitanović and A. D. Kennedy

Dirac discovered spinors in his search for a vectorial quantity that could be inter-
preted as a “square root” of the Minkowski 4-momentum squared,

(p1γ1 + p2γ2 + p3γ3 + p4γ4)
2 = −p21 − p22 − p23 + p24.

What happens if one extends a Minkowski 4-momentum(p1, p2, p3, p4) into fermi-
onic, Grassmann dimensions(p−n, p−n+1, . . . , p−2, p−1, p1, p2, . . . , pn−1, pn)?
The Grassmann sectorpµanticommute and the gamma-matrix relatives in the Grass-
mann dimensions have to satisfy the Heisenberg algebra commutation relation,

[γµ, γν ] = fµν1 ,

instead of the Clifford algebra anticommutator condition (11.2), with the bilinear
invariantfµν = −fνµ skew-symmetric in the Grassmann dimensions.

In chapter12, we showed that the symplectic groupSp(n) is the invariance
group of a skew-symmetric bilinear symplectic invariantfµν . In section14.1, we
investigate the consequences of takingγ matrices to be Grassmann valued; we
are led to a new family of objects, which we have namedspinsters[81]. In the
literature such reps are calledmetaplectic[336, 310, 192, 323, 301, 102, 193, 222].
Spinsters play a role for symplectic groups analogous to that played by spinors for
orthogonal groups. With the aid of spinsters we are able to compute, for example,
all the 3-j and6-j coefficients for symmetric reps ofSp(n). We find that these
coefficients are identical with those obtained forSO(n) if we interchange the roles of
symmetrization and antisymmetrization and simultaneously replace the dimension
n by −n. In section14.2, we make use of the fact thatSp(2) ≃ SU(2) to show
that the formulas forSU(2) 3-j and6-j coefficients are special cases of general
expressions for these quantities we derived earlier.

This chapter is based on ref. [81]. For a discussion of the role negative-dimensional
groups play in quantum physics, see ref. [102].

14.1 SPINSTERS

The Clifford algebra (11.2) Dirac matrix elements(γµ)ab are commuting numbers.
In this section we shall investigate consequences of takingγµ to be Grassmann
valued,

(γµ)ab(γν)cd = −(γν)cd(γµ)ab . (14.1)



GroupTheory version 9.0.1, April 8, 2011

SPINORS’ SYMPLECTIC SISTERS 161

The Grassmann extension of the Clifford algebra (11.2) is

1

2
[γµ, γν ] = fµν1 , µ, ν = 1, 2, . . . , n, n even. (14.2)

The anticommutator gets replaced by a commutator, and theSO(n) symmetric
invariant tensorgµν by theSp(n) symplectic invariantfµν . Just as the Dirac gamma-
matrices lead to spinor reps ofSO(n), the Grassmann valuedγµ give rise toSp(n)
reps, which we shall callspinsters.Following theSp(n) diagrammatic notation
for the symplectic invariant (12.1), we represent the defining commutation relation
(14.2) by

a c

νµ

= ������

a c

νµ

. (14.3)

For the symmetrized products ofγ matrices, the above commutation relations lead
to

��
��
��

��
��
��

...

...

21 3 p

=

��
��
��

��
��
��

...

... + (p− 1)

��
��
��

��
��
�� ���

���
���
���

...

... . (14.4)

As in chapter11, this gives rise to a complete basis for expanding products of
γ-matrices.Γ’s are now the symmetrized products ofγ matrices:

...

...

21 3 a

≡ a . (14.5)

Note that while for spinors theΓ(k) vanish by antisymmetry fork > n, for spinsters
theΓ(k)’s are nonvanishing for anyk, and the number of spinster basis tensors is
infinite. However, the reduction of a product ofk-γ-matrices involves only a finite
number ofΓ(l), 0 6 l 6 k. As the components(γµ)ab are Grassmann valued,
spinster traces of even numbers ofγ’s are anticyclic:

tr γµγν = (γµ)ab(γν)ba=− tr γνγµ

����

��
��
��

��
��
��

νµ =−
����

��
��
��

��
��
��

,

tr γµγνγργσ=− tr γνγργσγµ (14.6)

���� ���
���
���
���

σ ρ

νµ

=−
������

���
���
���
���

σ ρ

νµ

.

In the diagrammatic notation we indicate the beginning of a spinster trace by a dot.
The dot keeps track of the signs in the same way as the symplectic invariant (12.3)
for fµν . Indeed, tracing (14.3) we have

tr γµγν =fµν tr1

����

��
��
��

��
��
��

= ���
���
���
���

. (14.7)

Moving a dot through aγ matrix gives a factor−1, as in (14.6).
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Spinster traces can be evaluated recursively, as in (11.7). For a trace of an even
number ofγ’s we have

����

��
��
��
��

...

=
����

��
��
��
��

������...

+
����

��
��
��
��

������...

+ · · ·+
����

��
��
��
��

������
...

. (14.8)

The trace of an odd number ofγ’s vanishes [81]. Iteration of equation (14.8)
expresses a spinster trace as a sum of the(p− 1)!! = (p− 1)(p− 3) . . . 5.3.1 ways
of connecting the external legs withfµν . The overall sign is fixed uniquely by the
position of the dot on the spinster trace:

1

����

��
��
��

��
��
��

= ���
���
���
���

���
���
���
���

+ ���
���
���
���

���
���
���
���

+ ���
���
���
���
������

, (14.9)

and so on (see (11.15)).
Evaluation of traces of severalΓ’s is again a simple combinatoric exercise. Any

term in which a pair offµν indices are symmetrized vanishes, which implies that
anyΓ(k) with k > 0 is traceless. TheΓ’s are orthogonal:

a b
����

��
��
��

��
��
��

= a! δab
���
���
���
���

a . (14.10)

The symmetrized product ofa fµν ’s denoted by

���
���
���
���

a =
���
���
���
���

���
���
���
���
������1

2

a

... ......

(14.11)

is either symmetric or skew-symmetric:
���
���
���
���

a = (−1)a
���
���
���
��� a . (14.12)

A spinster trace of three symmetricSp(n) reps defines a 3-vertex:

b

ca
����

���
���
���
��� = (−1)t

a!b!c!

s!t!u! ���
���
���

���
���
���

���
���
���

���
���
���

����
����
����
����

c

b

a

u s

t

=0 for a+ b+ c = odd,

s =
1

2
(b+ c− a) , t=

1

2
(c+ a− b) , u =

1

2
(a+ b− c) . (14.13)

As in (11.20), Γ’s provide a complete basis for expanding products of arbitrary
numbers ofγ matrices:

���
���
���
���

������

...

=
∑

b

1

b!
���
���
���

���
���
���

���
���
���

���
���
���

b
����

���
���
���
���

...

. (14.14)

The coupling coefficients in (14.14) are computed as spinster traces using the or-
thogonality relation (14.10). As only traces of even numbers ofγ’s are nonvanishing,
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spinster traces are even Grassmann elements; they thus commute with any otherΓ,
and all the signs in the above completeness relation are unambiguous.

The orthogonality ofΓ’s enables us to introduce projection operators and 3-
vertices:

1
���
���
���
���

a
���
���
���
���

���
���
���

���
���
���

=
1

a!

������

a
���
���
���
���

���
���
���

���
���
���

, (14.15)

����

a b

c

=
(−1)t

��
��
��
��

����

���
���
���

���
���
���

a b

c

. (14.16)

The sign factor(−1)t gives a symmetric definition of the 3-vertex (see (3.11)). It is
important to note that the spinster loop runs clockwise in this definition. Because of
(3.41), the 3-vertex has a nontrivial symmetry under interchangeof two legs:

����

a b

c

= (−1)s+t+u
����

a b

c

. (14.17)

Note that this is different from (11.26); one of the few instances of spinsters and
spinors differing in a way that cannot be immediately understood as ann → −n
continuation.

The completeness relation (14.14) can be written as

������ ������

...

=
∑

b

1
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���
���
���
���

���
���
���

���
���
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��
��

��
��
��

...

b

. (14.18)

The recoupling relation is derived as in the spinor case (11.32):
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b
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���
���
���

���
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db
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��
��
��
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���
���
���
��� ...

b . (14.19)

Heredb is the dimension of the fully symmetrizedb-index tensor rep ofSp(n):

db =
������

b

����

��
��
��

��
��
��

=
... b

2
1

...

=

(
n+ b− 1

b

)
= (−1)b

(−n

b

)
. (14.20)

The spinster recoupling coefficients in (14.19) are analogues of the spinor Fierz
coefficients in (11.32). Completeness can be used to evaluate spinster traces in the
same way as in examples (11.34) to (11.35).
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The next step is the evaluation of3-j’s, 6-j’s, and spinster recoupling coefficients.
The spinster recoupling coefficients can be expressed in terms of 3-j’s just as in
(11.37):

1
����
������

���
���
���

���
���
���c

b

=
∑

(−1)
a+b+c

2
���
���
���
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���

��
��
��
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��
��
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��
��

����

����

a cb . (14.21)

The evaluation of3-j and6-j coefficients is again a matter of simple combinatorics:
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a cb =(−1)s+t+u

(
n+ s+ t+ u− 1

s+ t+ u

)
(s+ t+ u)!

s!t!u!
, (14.22)
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a4

a3

a1
a6

a2

a5

=
∑

t

(
n+ t− 1

t

)
(−1)tt!

t1!t2!t3!t4!t5!t6!t7!
, (14.23)

with theti defined in (11.48).
We close this section with a comment on the dimensionality ofspinster reps.

Tracing both sides of the spinor completeness relation (11.27), we determine the
dimensionality of spinor reps from the sum rule (11.30):

(tr 1)2 =

n∑

a=0

(
n

a

)
= 2n .

Hence, Dirac matrices (in even dimensions) are[2n/2 × 2n/2], and the range of
spinor indices in (11.3) is a, b = 1, 2, . . . , 2n/2.

For spinsters, tracing the completeness relation (14.18) yields (the string ofγ ma-
trices was indicated only to keep track of signs for oddb’s):
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=
∑

b

1
�������

���
���
���

���
���
���

���
���
���b =

∑

b

db (14.24)

(tr 1)2=

∞∑

c=o

(
n+ b− 1

b

)
.

The spinster trace is infinite. This is the reason why spinster traces are not to be found
in the list of the finite-dimensional irreducible reps ofSp(n). One way of making
the traces meaningful is to note that in any spinster trace evaluation only a finite
number ofΓ’s are needed, so we can truncate the completeness relation (14.18) to
terms0 6 b 6 bmax. A more pragmatic attitude is to observe that the final results
of the calculation are the3-j and6-j coefficients for the fully symmetric reps of
Sp(n), and that the spinster algebra (14.2) is a formal device for projecting only the
fully symmetric reps from various Clebsch-Gordan series for Sp(n).

The most striking result of this section is that the3-j and6-j coefficients are
just theSO(n) coefficients evaluated forn → −n. The reason for this we already
understand from chapter13.

When we took the Grassmann extension of Clifford algebras in(14.2), it was not
too surprising that the main effect was to interchange the role of symmetrization
and antisymmetrization. All antisymmetric tensor reps ofSO(n) correspond to the
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symmetric rep ofSp(n). What is more surprising is that if we take the expression
we derived for theSO(n) 3-j and6-j coefficients and replace the dimensionn by
−n, we obtain exactly the corresponding result forSp(n). The negative dimension
arises in these cases through the relation

(
−n
a

)
= (−1)a

(
n+a−1

a

)
, which may be

justified by analytic continuation of binomial coefficientsby the Beta function.

14.2 RACAH COEFFICIENTS

So far, we have computed the6-j coefficients for fully symmetric reps ofSp(n).
Sp(2) plays a special role here; the symplectic invariantfµν has only one indepen-
dent component, and it must be proportional toεµν . Hence,Sp(2) ≃ SU(2). The
observation thatSU(2) can be viewed asSO(−2) was first made by Penrose [281],
who used it to computeSU(2) invariants using “binors.” His method does not gen-
eralize toSO(n), for which spinors are needed to project onto totally antisymmetric
reps (for the casen = 2, this is not necessary as there are no other reps). ForSU(2),
all reps are fully symmetric (Young tableaux consist of a singlerow), and our6-j’s
are all the6-j’s needed for computingSU(2) ≃ SO(3) group-theoretic factors.
More pedantically:SU(2) ≃ Spin(3) ≃ S̃O(3). Hence, all the Racah [287] and
Wigner coefficients, familiar from the atomic physics textbooks, are special cases
of our spinor/spinster6-j’s. Wigner’s3-j symbol (5.14)

(
j1
m1

j2
m2

J
−M

)
≡ (−1)j1−j2+M

√
2J + 1

〈j1j2m1m2|JM〉 (14.25)

is really a clebsch with our3-j as a normalization factor.
This may be expressed more simply in diagrammatic form:

(
j1
m1

j2
m2

J
−M

)
=

iphase√

2J

j22
j12

���� ����

������

���
���
���
���

������
j22

2J����

j12

(14.26)

where we have not specified the phase convention on the right-hand side, as in the
calculation of physical quantities such phases cancel. Factors of 2 appear because our
integersa, b, . . . = 1, 2, . . . count the numbers ofSU(2)2-dimensional reps (SO(3)
spinors), while the usualj1, j2, . . . = 1

2 , 1,
3
2 , . . . labels correspond toSO(3)angular

momenta.
It is easy to verify (up to a sign) the completeness and orthogonality properties

of Wigner’s3-j symbols

∑

J,M

(2J + 1)
(
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j2
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J
M

) (
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d2J
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���
���
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2J
j12j12

j22 j22
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����

����
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����

=
j12

j22
∼ δm1m′

1
δm2m′

2
(14.27)
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∑

m1m2
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������ δJJ′

∼ δMM ′δJJ′

2J + 1
. (14.28)

The expression (14.22) for our 3-j coefficient withn = 2 gives the expression
usually written as∆ in Racah’s formula for

(
j
α

k
γ
l
γ

)
,

1

∆(j, k, l)
= (−1)j+k+l 2k

2j

2l
�������� ���
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���
���
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���
���
���

������

=
(j + k + l + 1)!

(j + k − l)!(k + l − j)!(l + j − k)!
. (14.29)

Wigner’s6-j coefficients (5.15) are the same as ours, except that the 3-vertices are
normalized as in (14.26)
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which gives Racah’s formula using (14.23), with n = 2:
{
j1
k1

j2
k2

j3
k3

}
=[∆(j1k2k3)∆(k1j2k3)∆(k1k2j3)∆(j1j2j3)]

1/2

×
∑

t

(−1)t(t+ 1)!

t1!t2!t3!t4!t5!t6!t7!
, where

t1= t− j1 − j2 − j3 , t5 = j1 + j2 − k1 + k2 − t ,

t2= t− j1 − k2 − k3 , t6 = j2 + j3 + k2 + k3 − t ,

t3= t− k1 − j2 − k3 , t7 = j3 + j1 + k3 + k1 − t ,

t4= t− k1 − k2 − j3 . (14.31)

14.3 HEISENBERG ALGEBRAS

What are these “spinsters”? A trick for relatingSO(n) antisymmetric reps toSp(n)
symmetric reps? That can be achieved without spinsters: indeed, Penrose [281]
had observed many years ago thatSO(−2) yields Racah coefficients in a much
more elegant manner than the usual angular momentum manipulations. In chap-
ter 13, we have also proved that for any scalar constructed from tensor invariants,
SO(−n) ≃ Sp(n). This theorem is based on elementary properties of permutations
and establishes the equivalence between6-j coefficients forSO(−n) andSp(n),
without reference to spinsters or any other Grassmann extensions.

Nevertheless, spinsters are the natural supersymmetric extension of spinors, and
the birdtrack derivation offers a different perspective from the literature discussions
of metaplectic reps of the symplectic group [310, 323, 102, 193, 222]. They do
not appear in the usual classifications, because they are infinite-dimensional reps
of Sp(n). However, they are not as unfamiliar as they might seem; if wewrite the
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Grassmannianγ matrices forSp(2D) asγµ = (p1, p2, . . . pD, x1, x2 . . . xD) and
choosefµν of form

f =

(
0 1

−1 0

)
, (14.32)

the defining commutator relation (14.2) is the defining relation for a Heisenberg
algebra, except for a missing factor ofi:

[pi, xj ] = δij1 , i, j = 1, 2, . . .D . (14.33)

If we include an extra factor ofi into the definition of the “momenta” above, we find
that spinsters resemble an antiunitary Grassmann-valued rep of the usual Heisenberg
algebra. The Clifford algebra has its spinor reps, and the Heisenberg algebra has
its infinite-dimensional Fock representation. The Fock space rep of the metaplectic
groupMp(n) is the double cover of the symplectic groupSp(n), just as the spinors
rep of theSpingroup is the double cover of the rotation groupSO(n).
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Chapter Fifteen

SU(n) family of invariance groups

SU(n) preserves the Levi-Civita tensor, in addition to the Kronecker δ of sec-
tion 9.10. This additional invariant induces nontrivial decompositions ofU(n) reps.
In this chapter, we show how the theory ofSU(2) reps (the quantum mechanics
textbooks’ theory of angular momentum) is developed by birdtracking; thatSU(3)
is the unique group with the Kronecker delta and a rank-3 antisymmetric primitive
invariant; thatSU(4) is isomorphic toSO(6); and that forn ≥ 4, onlySU(n) has
the Kroneckerδ and rank-n antisymmetric tensor primitive invariants.

15.1 REPS OFSU(2)

For SU(2), we can construct an additional invariant matrix that wouldappear to
induce a decomposition ofV ⊗ V reps:

Ea
b ,

c
d =

1

2
εacεbd =

a

b

d

c
. (15.1)

However, by (6.28) this can be written as a sum over Kronecker deltas and is not
an independent invariant. So what doesεac do? It does two things; it removes the
distinction between a particle and an antiparticle (ifqa transforms as a particle, then
εabqb transforms as an antiparticle), and it reduces the reps ofSU(2) to the fully
symmetric ones. ConsiderV ⊗ V decomposition (7.4)

1 ⊗ 2 = 1 2 + •

= + (15.2)

22=
2 · 3
2

+
2 · 1
2

.

The antisymmetric rep is a singlet,

= . (15.3)

Now consider the⊗V 3 and⊗V 4 space decompositions, obtained by adding
successive indices one at a time:

= + ���
���
���
���
���

���
���
���
���
���

= +
3

4
+



GroupTheory version 9.0.1, April 8, 2011

SU(n) FAMILY OF INVARIANCE GROUPS 169

1 × 2 × 3 = 1 32 + 1 + 3

= +
4

3
+

+
3

2
+

4

3
+

1 × 2 × 3 × 4 = 1 42 3 + 1 4 + 43 + 1 2 + •+ • . (15.4)

This is clearly leading us into the theory ofSO(3) angular momentum addition (or
SU(2) spin,i.e., both integer and half-integer irreps of the rotation group),described
in any quantum mechanics textbook. We shall, anyway, persist a little while longer,
just to illustrate how birdtracks can be used to recover somefamiliar results.

The projection operator form-index rep is

Pm = ......
m

2
1

. (15.5)

The dimension istrPm = 2(2 + 1)(2 + 2) . . . (2 +m− 1)/m! = m+1. In quan-
tum mechanics textbooksm is set tom = 2j, wherej is the spin of the rep. The
projection operator (7.10) for the adjoint rep (spin 1) is

= − 1

2
. (15.6)

This can be rewritten as using (15.3). The quadratic casimir for the defining
rep is

=
3

2
. (15.7)

Using

= − 1

2
=

1

2
, (15.8)

we can compute the quadratic casimir for any rep

n =n ... ......

C2(n) = =n2 ...... ... ...

=n

{

...... ... + (n− 1) ...... ...

}

=n

(
3

2
+

n− 1

2

)
=

n(n+ 2)

2
. (15.9)
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The Dynkin index forn-index rep is given by

ℓ(n) =
C2(n)dn
C2(2)d2

=
n(n+ 1)(n+ 2)

24
. (15.10)

We can also construct clebsches for various Kronecker products. For example,
λp ⊗ λ1 is given by

2
1

...

p

... ... = ...

... +
2(p− 1)

p

... ... (15.11)

for anyU(n). ForSU(2) we have (15.3), so

2 11 p-... × p = p1 2 ... + 2p-1 2 ...

...

... = ...

... +
2(p− 1)

p

...... . (15.12)

Hence, the Clebsch-Gordan forλp ⊗ λ1 → λp−1 is

√
2(p− 1)/p -2

2
1

p

...... . (15.13)

As we have already given the complete theory ofSO(3) angular momentum in
chapter14, by giving explicit expressions for all Wigner 6-j coefficients (Racah
coefficients), we will not pursue this further here.

Group weights have an amusing graph-theoretic interpretation for SO(3). For a
planar vacuum (no external legs) diagram weightWG with normalizationα = 2,
WG is the number of ways of coloring the lines of the graph with three colors [281].
This, in turn, is related to the chromatic polynomials, Heawood’s conjecture, and
the 4-color problem [294, 268].

15.2 SU(3) AS INVARIANCE GROUP OF A CUBIC INVARIANT

QCD hadrons are built from quarks and antiquarks, and with hadron spectrum con-
sisting of the following

1. Mesons, each built from a quark and an antiquark.

2. Baryons, each built from three quarks or antiquarks in a fully antisymmetric
color combination.

3. No exotic states,i.e., no hadrons built from other combinations of quarks and
antiquarks.

We shall show here that for such hadronic spectrum the color group can be only
SU(3).

In the group-theoretic language, the above three conditions are a list of the prim-
itive invariants (color singlets) that define the color group:
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1. One primitive invariant isδab , so the color group is a subgroup ofSU(n).

2. There is a cubic antisymmetric invariantfabc and its dualfabc.

3. There are no further primitive invariants. This means that any invariant tensor
can be written in terms of the tree contractions ofδba, f

abc andfbca.

In the birdtrack notation,

fabc =

���
���
���
���

���
���
���
���

������

a b

c

, fabc =
���
���
���

���
���
���

���
���
���

���
���
���

������

a b

c

. (15.14)

fabc andfabc are fully antisymmetric:

���
���
���

���
���
���

���
���
���

���
���
���

= −
���
���
���
���

���
���
���
���

���
���
���
���

. (15.15)

We can already see that the defining rep dimension is at least three,n ≥ 3, as other-
wisefabc would be identically zero. Furthermore,f ’s must satisfy a normalization
condition,

fabcfbdc=αδad

=α . (15.16)

(For convenience we setα = 1 in what follows.) If this were not true, eigenvalues
of the invariant matrixF a

d = fabcfbdc could be used to split then-dimensional rep
in a direct sum of lower-dimensional reps; but thenn-dimensional rep would not be
the defining rep.

V ⊗V states: According to (7.4), they split into symmetric and antisymmetric
subspaces. The antisymmetric space is reduced ton + n(n− 3)/2 by the fabc

invariant:

= +

{
−

}

Aab
cd=fabef

ecd +
{
Aab

cd − fabef
ecd
}

. (15.17)

On the symmetric subspace thefabef
ecd invariant vanishes due to its antisymmetry,

so this space is not split. The simplest invariant matrix on the symmetric subspace
involves fourf ’s:

Kab,
cd = ���

���
���

���
���
���

����
����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

a

b

c

d
h

ge

f

= faeffbhgf
cehfdfg . (15.18)

As the symmetric subspace is not split, this invariant must have a single eigenvalue

Kab,
cd = βSab,

cd = β . (15.19)
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TracingKab,
ad fixesβ = 2

n+1 . The assumption, thatk is not an independent in-
variant, means that we do not allow the existence of exoticqqqq hadrons. The
requirement, that all invariants be expressible as trees ofcontractions of the primi-
tives

��
��
��

��
��
��

��
��
��
��

= A +B + C , (15.20)

leads to the relation (15.19). The left-hand side is symmetric under index interchange
a ↔ b, soC = 0 andA = B.

V ⊗V states:The simplest invariant matrix that we can construct fromf ’s is

Qa
b ,

d
c =

1

α
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

a

b

c

d
= faedfbce . (15.21)

By crossing (15.19), Q satisfies a characteristic equation,

Q2=
1

n+ 1
{1+ T }
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��
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���
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��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
��� =

1

n+ 1

{

��
��
��
��

��
��
��

��
��
��

+

}
. (15.22)

On the traceless subspace (7.8), this leads to(
Q2 − 1

n+ 1
1

)
P2 = 0 , (15.23)

with eigenvalues±1/
√
n+ 1. V ⊗V contains the adjoint rep, so at least one of the

eigenvalues must correspond to the adjoint projection operator. We can compute the
adjoint rep eigenvalue from the invariance condition (4.36) for f bcd:
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���
���
���
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���
���
���
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���

+
���
���
���
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���
���
���

+
���
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���

���
���
���
���

���
���
���
���

= 0 . (15.24)

Contracting withf bcd, we find

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���
���

���
���
���
���

=−1

2
������

PAQ=−1

2
PA . (15.25)

Matching the eigenvalues, we obtain1/
√
n+ 1 = 1/2, son = 3: quarks can come

in three colors only, andfabc is proportional to the Levi-Civita tensorεabc of SU(3).
The invariant matrixQ is not an independent invariant; then(n−3)/2-dimensional
antisymmetric space (15.17) has dimension zero, soQ can be expressed in terms of
Kronecker deltas:

0= −
��
��
��

��
��
��

���
���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���
���

0=Aab
cd −Qc

a,
d
b . (15.26)

We have proven that the only group that satisfies the conditions 1–3, at the beginning
of this section, isSU(3). Of course, it is well known that the color group of physical
hadrons isSU(3), and this result might appear rather trivial. That it is not so will
become clear from the further examples of invariance groups, such as theG2 family
of the next chapter.
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15.3 LEVI-CIVITA TENSORS AND SU(n)

In chapter12, we have shown that the invariance group for a symplectic invariantfab

isSp(n). In particular, forfab = εab, the Levi-Civita tensor, the invariance group is
SU(2) = Sp(2). In the preceding section, we have proven that the invariance group
of a skew-symmetric invariantfabc is SU(3), and thatfabc must be proportional
to the Levi-Civita tensor. Now we shall show that forfabc...d with r indices, the
invariance group isSU(r), andf is always proportional to the Levi-Civita tensor.
(We consider here unitary transformations only; in general, the whole groupSL(3)
preserves the Levi-Civita tensor.)r = 2 andr = 3 cases had to be treated separately,
because it was possible to construct fromfab andfabc tree invariants on theV⊗V →
V ⊗ V space, which could reduce the groupSU(n) to a subgroup. Forfab, n ≥ 4
this is, indeed, what happens:SU(n) → Sp(n), for n even.

For r ≥ 4, we assume here that the primitive invariants areδba and the fully
skew-symmetric invariant tensors

fa1a2...ar = ... , fa1a2...ar
= ... , r > 3 . (15.27)

A fully antisymmetric object can be realized only inn ≥ r dimensions. By the
primitiveness assumption

... =α
... =

2α

n− 1
��
��
��

��
��
��

��
��
��
��

, etc., (15.28)

i.e., various contractions off ’s must be expressible in terms ofδ’s, otherwise there
would exist additional primitives. (f invariants themselves have too many indices
and cannot appear on the right-hand side of the above equations.)

The projection operator for the adjoint rep can be built onlyfrom δab δ
c
d andδadδ

c
b .

From section9.10, we know that this can give us only theSU(n) projection operator
(7.8), but just for fun we feign ignorance and write

1

a
������ ������ = A

{
��
��
��

��
��
��

��
��
��
��

+ b ������ ������

}
. (15.29)

The invariance condition (6.56) onfab...c yields

0 =

������
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���
��� ���

���
���
���

���
���
���
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���
���

...

...

+ b ���
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���
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���
���

���
���
���

���
���
���

������
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����

...
.

Contracting from the top, we get0 = 1 + b n. Antisymmetrizing all outgoing legs,
we get

0 =

���������������������
���������������������
���������������������
���������������������

������
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���
���

���
���
���

������

...

... . (15.30)
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Contracting withδab from the side, we get0 = n− r. As in (6.30), this defines the
Levi-Civita tensor inn dimensions and can be rewritten as

...

...
= nα

���������������
���������������
���������������

���������������
���������������
���������������

������ ������ ������...

...
. (15.31)

(The conventional Levi-Civita normalization isnα = n! .) The solutionb = −1/n
means thatTi is traceless,i.e., the same as for theSU(n) case considered in sec-
tion 9.10. To summarize: The invariance condition forcesfabc...c to be proportional
to the Levi-Civita tensor (inn dimensions, a Levi-Civita tensor is the only fully
antisymmetric tensor of rankn), and the primitivesδab , fab...d (rankn) haveSU(n)
as their unique invariance algebra.

15.4 SU(4)–SO(6) ISOMORPHISM

We have shown that if the primitive invariants areδ′ab , fab...cd′ , the corresponding
Lie group is the defining rep ofSU(n), andfab...cd is proportional to the Levi-Civita
tensor. However, there are still interesting things to be said about particularSU(n)’s.
As an example, we will establish theSU(4) ≃ SO(6) isomorphism.

The antisymmetricSU(4) rep is of dimensiondA = 4 · 3/2 = 6. Let us introduce
clebsches

��
��
��
��

��
��
��

��
��
��

=
����
����
����

����
����
����

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

Aab,
cd=

1

4
(γµ)ab(γµ)

cd , µ = 1, 2, . . . , 6 . (15.32)

1/4 normalization ensures thatγ’s will have the Dirac matrix normalization.
The Levi-Civita tensor induces a quadratic symmetric invariant on the 6-dimen-

sional space

gµν = =

=
1

4
(γµ)

abǫbacd(γν)
dc . (15.33)

This invariant has an inverse:

gµν = = 6 , (15.34)

where the factor 6 is the normalization factor, fixed by the conditiongµνgνσ = δσµ :

gµνg
νσ=

=6

=6
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=6
(n− 3)

4

(n− 2)

3
= = δσµ . (15.35)

Here we have used (6.28), (15.32), and the orthonormality for clebsches:

=

(γµ)
ab(γµ)ba=4δνµ . (15.36)

As we have shown in chapter10, the invariance group for a symmetric invariantgµν
is SO(dA). One can check that the generators for the 6-dimensional repof SU(4),
indeed, coincide with the defining rep generators ofSO(6), and that the dimension
of the Lie algebra is in both cases 15.

The invariance condition (6.56) for the Levi-Civita tensor is
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ForSU(4) we have
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Contracting with(γµ)ab(γν)cd, we obtain
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be(γν)ab + (γµ)ad(γν)

de=2δeagµν . (15.39)

Here(γν)ab ≡ (γν)
cdεdcab, and we recognize the Dirac equation (11.4). So the

clebsches (15.32) are, indeed, theγ-matrices forSO(6) (semi)spinor reps (11.65).
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Chapter Sixteen

G2 family of invariance groups

In this chapter, we begin the construction of all invariancegroups that possess a
symmetric quadratic and an antisymmetric cubic invariant in the defining rep. The
resulting classification is summarized in figure16.1. We find that the cubic invariant
must satisfy either the Jacobi relation (16.7) or the alternativity relation (16.11). In
the former case, the invariance group can be any semisimple Lie group in its adjoint
rep; we pursue this possibility in the next chapter. The latter case is developed in
this chapter; we find that the invariance group is eitherSO(3) or the exceptional Lie
groupG2. The problem of evaluation of3n-jcoefficients forG2 is solved completely
by the reduction identity (16.14). As a by-product of the construction, we give a proof
of Hurwitz’s theorem (section16.5) and demonstrate that the independent casimirs
forG2 are of order 2 and 6, by explicitly reducing the order 4 casimir in section16.4.
Here we are concerned only with the derivation ofG2. For a systematic discussion
of G2 invariants (in tensorial notation) we refer the reader to Macfarlane [221].

Consider the following list of primitive invariants:

1. δab , so the invariance group is a subgroup ofSU(n).

2. Symmetricgab = gba, gab = gba, so the invariance group is a subgroup of
SO(n). As in chapter10, we take this invariant in its diagonal, Kronecker
delta formδab.

3. A cubic antisymmetric invariantfabc.

Primitiveness assumptionrequires that all other invariants can be expressed in terms
of the tree contractions ofδab , fabc.

In the diagrammatic notation, one keeps track of the antisymmetry of the cubic
invariant by reading the indices off the vertex in a fixed order:

fabc = = − = −facb . (16.1)

The primitiveness assumption implies that the double contraction of a pair off ’s
is proportional to the Kronecker delta. We can use this relation to fix the overall
normalization off ’s:

fabcfcbd =α δad

=α . (16.2)

For convenience, we shall often setα = 1 in what follows.
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+ B= A

,

(3)SO

E family8

(3)SU

n=7 n=6

= 0

(n)(n),(n),

=

6 =

SU SO Sp

2G

primitives:

quartic primitive no quartic primitive

any adjoint representation

Jacobi

no relations

two relations one relation

alternativity

assume:

Figure 16.1 Logical organization of chapters16–17. The invariance groupsSO(3) andG2

are derived in this chapter, while theE8 family is derived in chapter17.

The next step in our construction is to identify all invariant matrices onV⊗V and
construct the Clebsch-Gordan series for decomposition of 2-index tensors. There
are six such invariants: the three distinct permutations ofindices ofδabδcd, and the
three distinct permutations of free indices offabefecd. For reasons of clarity, we shall
break up the discussion in two steps. In the first step, section 16.1, we assume that
a linear relation between these six invariants exists. Puresymmetry considerations,
together with the invariance condition, completely fix the algebra of invariants and
restrict the dimension of the defining space to either 3 or 7. In the second step,
section16.3, we show that a relationassumedin the first step must exist because of
the invariance condition.

Example.Consider “quarks" and “hadrons" of a Quantum Chromodynamics with
the hadronic spectrum consisting of the following singlets:

1. Quark-antiquark mesons.

2. Mesons built of two quarks (or antiquarks) in a symmetric color combination.

3. Baryons built of three quarks (or antiquarks) in a fully antisymmetric color
combination.

4. No exotics,i.e., no hadrons built from other combinations of quarks and
antiquarks.
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As we shall now demonstrate, for this hadronic spectrum the color group is either
SO(3), with quarks of three colors, or the exceptional Lie groupG2, with quarks
of seven colors.

16.1 JACOBI RELATION

If the above six invariant tensors are not independent, theysatisfy a relation of form

0 = A +B +C +D +E +F . (16.3)

Antisymmetrizing a pair of indices yields

0 = A′ + E + F ′ , (16.4)

and antisymmetrizing any three indices yields

0 = (E + F ′) . (16.5)

If the tensor itself vanishes,f ’s satisfy theJacobi relation(4.49):

0 = − + . (16.6)

If A′ 6= 0 in (16.4), the Jacobi relation relates the second and the third term:

0 = + E′ . (16.7)

The normalization condition (16.2) fixesE′ = −1 :

= . (16.8)

Contracting the free ends of the top line withδab, we obtain1 = (n − 1)/2, so
n = 3. We conclude that if pair contraction off ’s is expressible in terms ofδ’s,
the invariance group isSO(3), andfabc is proportional to the 3-index Levi-Civita
tensor. To spell it out; in three dimensions, an antisymmetric rank-3 tensor can take
only one value,fabc = ±f123, that can be set equal to±1 by the normalization
convention (16.2).

If A′ = 0 in (16.4), the Jacobi relation is the only relation we have, and the
adjoint rep of any simple Lie group is a possible solution. Wereturn to this case in
chapter17.

16.2 ALTERNATIVITY AND REDUCTION OF f -CONTRACTIONS

If the Jacobi relation does not hold, we must haveE = −F ′ in (16.5), and (16.4)
takes the form

+ = A′′ . (16.9)
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Contracting withδab fixesA′′ = 3/(n − 1). Symmetrizing the top two lines and
rotating the diagrams by900, we obtain thealternativity relation:

=
1

n− 1

{
−

}
. (16.10)

The name comes from the octonion interpretation of this formula (see section16.4).
Adding the two equations, we obtain

+ =
1

n− 1

{
− 2 +

}
. (16.11)

By (16.9), the invariant is reducible on the antisymmetric subspace. By
(16.10), it is also reducible on the symmetric subspace. The only independentf · f
invariant is , which, by the normalization (16.2), is already the projection
operator that projects the antisymmetric 2-index tensors onto then-dimensional
defining space. The Clebsch-Gordan decomposition ofV ⊗V follows:

=
1

n
+

{
− 1

n

}

+ +

{
−

}

n2=1 +
(n− 1)(n+ 2)

2
+ n+

n(n− 3)

2
. (16.12)

The dimensions of the reps are obtained by tracing the corresponding projection
operators.

The adjoint rep of SO(n) is now split into two reps. Which one is the new
adjoint rep? We determine this by considering (6.56), the invariance condition for
fabc. If we take to be the projection operator for the adjoint rep, we again
get the Jacobi condition (16.6), with SO(3) as the only solution. However, if we
demand that the last term in (16.12) is the adjoint projection operator

1

a
= − , (16.13)

the invariance condition takes the form

0 = ���
���
���
���

��
��
��
��

= − . (16.14)

The last term can be simplified by (6.19) and (16.9):

3 = − 2 = 3 + 2
3

n− 1
.

Substituting back into (16.14) yields

= − 2

n− 1
= .
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Expanding the last term and redrawing the equation slightly, we have

=
2

n− 1
− 2

3
+

1

3
.

This equation is antisymmetric under interchange of the left and the right index
pairs. Hence,2/(n − 1) = 1/3, and the invariance condition is satisfiedonly for
n = 7. Furthermore, the above relation gives us theG2 reduction identity

=
α

3





− 2 +





. (16.15)

This identity is the key result of this chapter: it enables us to recursively reduceall
contractions of products ofδ-functions and pairwise contractionsfabcfcde, and thus
completely solves the problem of evaluating any casimir or3n-j coefficient ofG2.

The invariance condition (16.14) for fabc implies that

=
1

2
. (16.16)

The “triangle graph” for the defining rep can be computed in two ways, either by
contracting (16.10) with fabc, or by contracting the invariance condition (16.14)
with δab:

=
4− n

n− 1
=

5− n

4
. (16.17)

So, the alternativity and the invarianceconditions are consistent if(n−3)(n−7) = 0,
i.e., only for three or seven dimensions. In the latter case, the invariance group is
the exceptional Lie groupG2, and the above derivation is also a proof of Hurwitz’s
theorem (see section16.4).

In this way, symmetry considerations together with the invariance conditions
suffice to determine the algebra satisfied by the cubic invariant. The invariance
condition fixes the defining dimension ton = 3 or 7. Having assumed only that
a cubic antisymmetric invariant exists, we find that if the cubic invariant is not a
structure constant, it can be realized only in seven dimensions, and its algebra is
completelydetermined. The identity (16.15) plays the role analogous to one the
Dirac relation{γµ, γν} = 2gµν1 plays for evaluation of traces of products of Dirac
gamma-matrices, described above in chapter11. Just as the Dirac relation obviates
the need for explicit reps ofγ’s, (16.14) reduces anyf · f · f contraction to a sum
of terms linear inf and obviates any need for explicit construction off ’s.

The above results enable us to compute any group-theoretic weight forG2 in two
steps. First, we replace all adjoint rep lines by the projection operatorsPA (16.13).
The resulting expression contains Kronecker deltas and chains of contractions of
fabc, which can then be reduced by systematic application of the reduction identity
(16.15).
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The above 1975 diagrammatic derivation of the Hurwitz theorem was one of the
first nontrivial applications of the birdtrack technology [73, 74, 82]. More recently,
the same diagrammatic proof of Hurwitz’s theorem has been given by Dominic
Boos [27], based on the algebraic proof by Markus Rost [300].

16.3 PRIMITIVITY IMPLIES ALTERNATIVITY

The step that still remains to be proven is the assertion thatthe alternativity relation
(16.10) follows from the primitiveness assumption. We complete the proof in this
section. The proof is rather inelegant and should be streamlined (an exercise for the
reader).

If no relation (16.3) between the threef · f contractions is assumed, then by the
primitiveness assumption the adjoint rep projection operatorPA is of the form

= A

{
+B + C

}
. (16.18)

Assume that the Jacobi relation does not hold; otherwise, this immediately reduces to
SO(3). The generators must be antisymmetric, as the group is a subgroup ofSO(n).
Substitute the adjoint projection operator into the invariance condition (6.56) (or
(16.14)) for fabc:

0 = +B + C . (16.19)

Resymmetrize this equation by contracting with . This is evaluated

substituting (6.19) and using the relation (6.61):

= 0 . (16.20)

The result is

0 = − +
C −B

2
+B . (16.21)

Multiplying (16.19) byB, (16.21) byC, and subtracting, we obtain

0 = (B + C)

{
+

(
B − C

2

) }
. (16.22)

We treat the caseB + C = 0 below, in (16.26).

If B + C 6= 0, by contracting withfabc we getB − C/2 = −1, and

0 = − . (16.23)

To prove that this is equivalent to the alternativity relation, we contract with ,
expand the 3-leg antisymmetrization, and obtain
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0 = − +

− + −

0 = − 2 − + 2 . (16.24)

The triangle subdiagram can be computed by adding (16.19) and (16.21)

0 = (B + C)

{
1

2
+

}

and contracting with . The result is

= −1

2
. (16.25)

Substituting into (16.24), we recover the alternativity relation (16.10). Hence, we
have proven that the primitivity assumption implies the alternativity relation for the
caseB + C 6= 0 in (16.22).

If B + C = 0, (16.19) takes the form

0 = +B

{
−

}
. (16.26)

Using the normalization (7.38) and orthonormality conditions, we obtain

=
6− n

9− n
(16.27)

1

a
=

6

15− n
+

2(9− n)

15− n

{
−

}
(16.28)

N=
1

a
=

4n(n− 3)

15− n
. (16.29)

The remaining antisymmetric rep

= − − 1

a

=
9− n

15− n

{
− 2 +

3− n

9− n

}
(16.30)

has dimension

d = ��������������������������������������
=

n(n− 3)(7− n)

2(15− n)
. (16.31)
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The dimension cannot be negative, sod ≤ 7. Forn = 7, the projection operator
(16.30) vanishes identically, and we recover the alternativity relation (16.10).

The Diophantine condition (16.31) has two further solutions:n = 5 andn = 6.

Then = 5 is eliminated by examining the decomposition of the traceless symmet-
ric subspace in (16.12), induced by the invariantQ = . By the primitiveness

assumption,Q2 is reducible on the symmetric subspace

0=

{
+A +B

}{
− 1

n

}

0=(Q2 +AQ+B1)P2 .

Contracting the top two indices withδab and(Ti)ab, we obtain(
Q2 − 1

2

3− n

9− n
Q− 5

2

6− n

(2 + n)(9− n)
1

)
P2 = 0 . (16.32)

For n = 5, the roots of this equation are irrational and the dimensions of the
two reps, induced by decomposition with respect toQ, are not integers. Hence,
n = 5 is not a solution. Then = 6 case appears to be related to Westbury’s
sextonians[341, 208, 209, 343] a 6-dimensional alternative algebra, intermediate
between the complex quaternions and octonions. I leave the proof of that as an
exercise to the reader.

16.4 CASIMIRS FOR G2

In this section, we prove that the independent casimirs forG2 are of order 2 and 6,
as indicated in table7.1. AsG2 is a subgroup ofSO(7), its generators are antisym-
metric, and only even-order casimirs are nonvanishing.

The quartic casimir, in the notation of (7.9),

= trX4 =
∑

ijkl

xixjxkxl tr (TiTjTkTl) ,

can be reduced by manipulating it with the invariance condition (6.56)

= −2 = 2 + 2 .

The last term vanishes by further manipulation with the invariance condition

= = 0 . (16.33)

The remaining term is reduced by the alternativity relation(16.10)

= =
1

6

{
−

}
.

This yields the explicit expression for the reduction of quartic casimirs in the defining
rep ofG2:

=
1

3

{
−

}

trX4=
1

4

(
trX2

)2
. (16.34)
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As the defining rep is 7-dimensional, the characteristic equation (7.10) reduces the
casimirs of order 8 or higher. Hence, the independent casimirs forG2 are of order
2 and 6.

16.5 HURWITZ’S THEOREM

Throughout this text the field over which the defining vector spaceV is defined
is eitherR, the field of real numbers, orC, the field of complex numbers. Neither
quaternions (a skew field or division ring), nor octonions (anonassociative algebra)
form a field.

Frobenius’s theorem states that the only associative real division algebras are the
real numbers, the complex numbers, and the quaternions. In order to interpret the
results obtained above, we need to definenormed algebras.

Definition (Curtis [70]). A normed algebraA is an(n+1)-dimensional vector space
over a fieldF with a productxy such that

(i) x(cy) = (cx)y = c(xy) , c ∈ F

(ii) x(y + z) = xy + xz , x, y, z ∈ A

(x+ y)z = xz + yz,

and a nondegenerate quadratic norm that permits composition

(iii) N(xy) = N(x)N(y) , N(x) ∈ F. (16.35)

HereF will be the field of real numbers. Let{e0, e1, . . . , en} be a basis ofA over
F :

x = x0e0 + x1e1 + . . .+ xnen , xa ∈ F , ea ∈ A . (16.36)

It is always possible to chooseeo = I (see Curtis [70]). The product of remaining
bases must close the algebra:

eaeb = −dabI+ fabcec , dab, fabc ∈ F a, . . . , c = 1, 2, . . . , n . (16.37)

The norm in this basis is

N(x) = x2
0 + dabxaxb. (16.38)

From the symmetry of the associated inner product (Tits [326]),

(x, y) = (y, x) = −N(x+ y)−N(x)−N(y)

2
, (16.39)

it follows that−dab = (ea, eb) = (eb, ea) is symmetric, and it is always possible
to choose basesea such that

eaeb = −δab + fabcec. (16.40)

Furthermore, from

− (xy, x)=
N(xy + x)−N(x)N(y)

2
= N(x)

N(y + 1)−N(y)− 1

2
=N(x)(y, 1), (16.41)
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it follows thatfabc = (ea, eb, ec) is fully antisymmetric. [In Tits’s notation [326],
the multiplication tensorfabc is replaced by a cubic antisymmetric form(a, a′, a′′),
his equation (14)]. The composition requirement (16.35) expressed in terms of bases
(16.36) is

0=N(xy)−N(x)N(y)

=xaxbycyd (δacδbd − δabδcd + facefcbd) . (16.42)
To make a contact with section16.2, we introduce diagrammatic notation (factor
i
√
6/α adjusts the normalization to (16.2))

fabc = i

√
6

α
. (16.43)

Diagrammatically, (16.42) is given by

0 = − +
6

α
. (16.44)

This is precisely the alternativity relation (16.10) we have proven to be nontrivially
realizable only in three and seven dimensions. The trivial realizations aren = 0 and
n = 1, fabc = 0. So we have inadvertently proven

Hurwitz’s theorem [165, 166, 70, 169]: (n+1)-dimensional normed algebras over
reals exist only forn = 0, 1, 3, 7 (real, complex, quaternion, octonion).

We call (16.10) the alternativity relation, because it can also be obtained by
substituting (16.40) into the alternativity condition for octonions [305]

[xyz]≡ (xy)z − x(yz) ,

[xyz]= [zxy] = [yzx] = − [yxz] . (16.45)
Cartan [43] was first to note thatG2(7) is the isomorphism group of octonions,i.e.,
the group of transformations of octonion bases (written here in the infinitesimal
form)

e′a = (δab + iDab)eb ,

which preserve the octonionic multiplication rule (16.40). The reduction identity
(16.15) was first derived by Behrendset al. [18], in index notation: see their equation
(V.21) and what follows. Tits also constructed the adjoint rep projection operator
for G2(7) by defining the derivation on an octonion algebra as

Dz = 〈x, y〉z = −1

2
((x · y) · z) + 3

2
[(y, z)x− (x, z)y]

[Tits 1966, equation (23)], where
ea · eb ≡ fabcec, (16.46)

(ea, eb) ≡ −δab. (16.47)
Substitutingx = xaea, we find

(Dz)d = −3xayb

(
1

2
δabδbd +

1

6
fabefecd

)
zc . (16.48)

The term in the brackets is just theG2(7) adjoint rep projection operatorPA in
(16.13), with normalizationα = −3.
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Chapter Seventeen

E8 family of invariance groups

In this chapter we continue the construction of invariance groups characterized by a
symmetric quadratic and an antisymmetric cubicprimitive invariant. In the preceding
chapter we proved that the cubic invariant must either satisfy the alternativity relation
(16.11), or the Jacobi relation (4.48), and showed that the first case hasSO(3) and
G2 as the only interesting solutions.

Here we pursue the second possibility and determine all invariance groups that
preserve a symmetric quadratic (4.28) and an antisymmetric cubic primitive invariant
(4.46),

, = − ���� , (17.1)

with the cubic invariant satisfying the Jacobi relation (4.48)

− = . (17.2)

Our task is twofold:

1. Enumerate all Lie algebras defined by the primitives (17.1). The key idea here
is the primitiveness assumption (3.39). By requiring that the list of (17.1) is the
full list of primitive invariants,i.e., that any invariant tensor can be expressed
as a linear sum over the tree invariants constructed from thequadratic and
the cubic invariants, we are classifying those invariance groups for whichno
quartic primitiveinvariant exists in the adjoint rep (see figure16.1).

2. Demonstrate that we can compute all3n-jcoefficients (or casimirs, or vacuum
bubbles); the ones up to 12-j are listed in table5.1. Due to the antisymmetry
(17.1) of structure constants and the Jacobi relation (17.2), we need to con-
centrate on evaluation of only the even-order symmetric casimirs, a subset of
(7.13):

, , , · · · . (17.3)

Here cheating a bit and peeking into the list of the Betti numbers (table7.1)
offers some moral guidance: the orders of Dynkin indices fortheE8 group are
2, 8, 12, 14, 18, 20, 24, 30. In other words, there is no way manual birdtracking
is going to take us to the end of this road.
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We accomplish here most of 1: the Diophantine conditions (17.13)–(17.19) and
(17.38)–(17.40) yield all of theE8 family Lie algebras, and no stragglers, but we
fail to prove that there exist no further Diophantine conditions, and that all of these
groups actually exist. We are much further from demonstrating 2: the projection
operators (17.15), (17.16), (17.31)–(17.33) for theE8 family enable us to evaluate
diagrams with internal loops of length 5 or smaller, but we have no proof that
anyvacuum bubble can be so evaluated. Should we be intimidated by existence of
Dynkin indices of order 30? Not necessarily: we saw that any classical Lie group
vacuum bubble can be iteratively reduced to a polynomial inn, regardless of the
number of its Dynkin indices. But forF4, E6, E7, andE8 such algorithms remain
unknown.

As, by assumption, the defining rep satisfies the Jacobi relation (17.2), the defining
rep is in this case alsoA, the adjoint rep of some Lie group. Hence, in this chapter
we denote the dimension of the defining rep byN , the cubic invariant by the Lie
algebra structure constants−iCijk, and draw the invariants with the thin (adjoint)
lines, as in (17.1) and (17.2).

The assumption that the defining rep is irreducible means in this case that the Lie
group is simple, and the quadratic casimir (Cartan-Killingtensor) is proportional to
the identity

= CA . (17.4)

In this chapter we shall choose normalizationCA = 1. The Jacobi relation (17.2)
reduces a loop with three structure constants

=
1

2
. (17.5)

Remember diagram (1.1)? The one diagram that launched this whole odyssey? In
order to learn how to reduce such 4-vertex loops we turn to thedecomposition of
theA⊗A space.

In what follows, we will generate quite a few irreducible reps. In order to keep
track of them, we shall label each family of such reps (for example, the eigenvalues
λ , λ in (17.12)) by the generalized Young tableau (or Dynkin label) notation
for theE8 irreducible reps (section17.4). A review of related literature is given in
section21.2.

17.1 TWO-INDEX TENSORS

The invariance group of the quadratic invariant (17.1) alone isSO(n), so as in
table10.1,A⊗A decomposes into singlet, symmetric, and antisymmetric subspaces.

Of the three possible tree invariants inA⊗A → A⊗A constructed from the cubic
invariant (17.1), only two are linearly independent because of the Jacobi relation
(17.2). The first one induces a decomposition of antisymmetricA⊗A tensors into
two subspaces:

= +

{
−

}
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+
1

N
+

{
− 1

N

}
(17.6)

1=P +P +P• +Ps .

As the other invariant matrix inA⊗A → A⊗A we take

Qij,kl =
k

i

j

l
. (17.7)

By the Jacobi relation (17.2),Q has zero eigenvalue on the antisymmetric subspace

QP = P =
1

2
P =

1

2
P P = 0 , (17.8)

soQ can decompose only the symmetric subspace Sym2A.
The assumption that there exists no primitive quartic invariant is thedefining

relation for theE8 family. By the primitiveness assumption, the 4-index loop in-
variantQ2 is not an independent invariant, but is expressible in termsof any full
linearly independent set of the 4-index tree invariantsQij,kℓ, CijmCmkℓ, andδij ’s
constructed from the primitive invariants (17.1),

+A +B +C +D +E = 0 .

Rotate by900 and compare. That eliminates two coefficients. Flip any pairof adja-
cent legs and use the Jacobi relation (17.2) (i.e., the invariance condition). Only one
free coefficient remains:

− 1

6

{
+

}
− q

2

{
+ +

}
= 0 .

(17.9)
Now, trace over a pair of adjacent legs, and evaluate 2- and 3-loops using (17.4)
and (17.5). This expresses the parameterq in terms of the adjoint dimension, and
(17.9) yields the characteristic equation forQ restricted to the traceless symmetric
subspace,

(
Q2 − 1

6
Q− 5

3(N + 2)
1

)
Ps = 0 . (17.10)

An eigenvalue ofQ satisfies the characteristic equation

λ2 − 1

6
λ− 5

3(N + 2)
= 0 ,

so the adjoint dimension can be expressed as

N + 2 =
5

3λ(λ− 1/6)
= 60

{
6− λ−1

6
− 2 +

6

6− λ−1

}
. (17.11)

As we shall seek for values ofλ such that the adjoint rep dimensionN is an integer,
it is natural to reparametrize the two eigenvalues as

λ = − 1

m− 6
, λ =

1

6

m

m− 6
, (17.12)
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a form that will lend itself to Diophantine analysis. In terms of the parameterm, the
dimension of the adjoint representation is given by

N = −2 + 60 (m/6− 2 + 6/m) , (17.13)

and the two eigenvalues map into each other underm/6 → 6/m. Substituting

λ − λ =
1

6

m+ 6

m− 6
(17.14)

into (3.48), we obtain the corresponding projection operators:

P = ���
���
���

���
���
���

=−6(m− 6)

m+ 6

{
− 1

6

m

m− 6

}
Ps (17.15)

P =

=
6(m− 6)

m+ 6

{
+

1

m− 6

}
Ps . (17.16)

In order to compute the dimensions of the two subspaces, we evaluate

trPsQ = − 1

N
= − N + 2

2
(17.17)

and obtain

d = trP =
(N + 2)(1/λ +N − 1)

2(1− λ /λ )
. (17.18)

Dimensiond is obtained by interchangingλ andλ . Substituting (17.13), (17.12)
leads to

d =
5(m− 6)2(5m− 36)(2m− 9)

m(m+ 6)

d =
270(m− 6)2(m− 5)(m− 8)

m2(m+ 6)
. (17.19)

To summarize, in absence of a primitive 4-index invariant,A⊗A decomposes
into five irreducible reps

1 = P +P +P• +P +P . (17.20)

The decomposition is parametrized by rational values ofm, and is possible only for
integerN andd that satisfy the Diophantine conditions (17.13), (17.19).

This happened so quickly that the reader might have missed it: our homework
problem is done. What we have accomplished by (17.9) is the reduction of the
adjoint rep 4-vertex loop in (1.1) for, as will turn out,all exceptional Lie algebras.



GroupTheory version 9.0.1, April 8, 2011

190 CHAPTER 17

17.2 DECOMPOSITION OF Sym3A

Now that you have aced the homework assignment (1.1), why not go for extra credit:
can you disentangle vacuum bubbles whose shortest loop is oflength 6,

= ? (17.21)

If you have an elegant solution, let me know. But what followsnext is cute enough.
The general strategy for decomposition of higher-rank tensor products is as fol-

lows; the equation (17.10) reducesQ2 to Q, Pr weighted by the eigenvaluesλ ,
λ . For higher-rank tensor products, we shall use the same result to decompose
symmetric subspaces. We shall refer to a decomposition as “uninteresting” if it
brings no new Diophantine condition. AsQ acts only on the symmetric subspaces,
decompositions of antisymmetric subspaces will always be uninteresting, as was
already the case in (17.8). We illustrate this by working out the decomposition of
Sym3A.

The invariance group of the quadratic invariant (17.1) alone isSO(N), with
the seven reps Clebsch-Gordan decomposition of theSO(N) 3-index tensors (ta-
ble 10.4): one fully symmetric, one fully antisymmetric, two copiesof the mixed
symmetry rep, and three copies of the defining rep. As the Jacobi relation (17.2)
trivializes the action ofQ on any antisymmetric pair of indices, the only serious
challenge that we face is reducing⊗A3 within the fully symmetric Sym3A subspace.

As the first step, project out theA andA⊗A content of Sym3A:

P =
3

N + 2
(17.22)

P =
6(N + 1)(N2 − 4)

5(N2 + 2N − 5)

����

����

����

����

����

����
���
���
���
���
���

���
���
���
���
���

ar r . (17.23)

P projects out Sym3A → A, andP projects out the antisymmetric subspace

(17.6) Sym3A → V . The ugly prefactor is a normalization, and will play no role

in what follows. We shall decompose the remainder of the Sym3A space

Pr = S −P −P = r (17.24)

by the invariant tensorQ restricted to thePr remainder subspace

Q =
����

���� , Q̂ =
����

����r r Q̂ = PrQPr . (17.25)

We can partially reducêQ2 using (17.10), but symmetrization leads also to a new
invariant tensor,

Q̂2 =
1

3
����

����

����

����

r r +
2

3
��������

����

����

r r . (17.26)

A calculation that requires applications of the Jacobi relation (17.2), symmetry
identities (6.63) such as

����

����

����

����
����

����

r r = 0 , (17.27)



GroupTheory version 9.0.1, April 8, 2011

E8 FAMILY OF INVARIANCE GROUPS 191

and relies on the fact thatPr contains noA, A⊗A subspaces yields

Q̂3 =
1

3
����

����

����

����

����

����

r r r +
2

3
����

����

����

����

������

����

r r . (17.28)

Reducing by (17.10) and usingλ + λ = 1/6 leads to

Q̂3 =
1

6

{
1

3
Q̂2 +

2

3
��������

����

����

r r

}
− λ λ Q̂ . (17.29)

The extra tensor can be eliminated by (17.26), and the result is a cubic equation for
Q̂:

0 =

(
Q̂− 1

18
1

)(
Q̂− λ 1

)(
Q̂− λ 1

)
Pr . (17.30)

The projection operators for the corresponding three subspaces are given by (3.48)

P =
1

(1/18− λ ) (1/18− λ )

(
Q̂− λ 1

)(
Q̂− λ 1

)
Pr

=− 162 (m− 6)2

(m+ 3)(m+ 12)

(
Q̂2 − 1

6
Q̂− 6m

(2− 6m)2
1

)
Pr , (17.31)

P
���
���
���

���
���
���=

1

(λ − 1/18) (λ − λ )

(
Q̂− 1

18
1

)(
Q̂− λ 1

)
Pr (17.32)

=
54 (m− 6)2

(m+ 3)(m+ 6)

(
Q̂2 − m− 24

18(m− 6)
Q̂+

1

18(m− 6)
1

)
Pr ,

P3=
1

(λ − 1/18) (λ − λ )

(
Q̂− 1

18
1

)(
Q̂− λ 1

)
Pr (17.33)

=
108 (m− 6)2

(m+ 6)(m+ 12)

(
Q̂2 − 2(m− 3)

9(m− 6)
Q̂+

m

108(m− 6)
1

)
Pr .

The presumption is (still to be proved for a general tensor product) that the interesting
reductions only occur in the symmetric subspaces, always via theQ characteristic
equation (17.10). As the overall scale ofQ is arbitrary, there is only one rational
parameter in the problem, eitherλ /λ orm, or whatever is convenient. Hence all
dimensions and3n-j coefficients (casimirs, Dynkin indices, vacuum bubbles) will
be ratios of polynomials inm.

To proceed, we follow the method outlined in appendixA. OnP ,P subspaces
SQ has eigenvalues

SQP =
����

����r r =
1

3
r → λ = 1/3 (17.34)

SQP =
����

����

����

����

����

���
���
���
���
���

���
���
���
���
���

arr =
1

6

����

����

����

���
���
���
���

���
���
���
���

ar → λ = 1/6 , (17.35)

so the eigenvalues areλ = 1/3, λ = 1/6, λ3 = 1/18, λ
���
���
���

���
���
��� = λ , λ = λ .

The dimension formulas (A.8) require evaluation of

trSQ= = −N(N + 2)

6
(17.36)
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tr(SQ)2= =
N(3N + 16)

36
. (17.37)

Substituting into (A.8) we obtain the dimensions of the three new reps:

d =
27(m− 5)(m− 8)(2m− 15)(2m− 9)(5m− 36)(5m− 24)

m2(3 +m)(12 +m)
(17.38)

d
���
���
���

���
���
���=

10(m− 6)2(m− 5)(m− 1)(2m− 9)(5m− 36)(5m− 24)

3m2(6 +m)(12 +m)
(17.39)

d3=
5(m− 5)(m− 8)(m− 6)2(2m− 15)(5m− 36)

m3(3 +m)(6 +m)
(36−m) . (17.40)

17.3 DIOPHANTINE CONDITIONS

AsN in (17.13) is an integer, allowedm are rationalsm = P/Q built fromQ any
combination of subfactors of the denominator360 = 1 ·23 ·32 ·5, and the numerator
P = 1,2, or5, whereP andQare relative primes. The solutions are symmetric under
interchangem/6 ↔ 6/m, so we need to check only the 23 rationalsm ≥ 6. The
Diophantine conditions (17.13), (17.19), and (17.38) are satisfied only form = 5,
8, 9, 10, 12, 18, 20, 24, 30, and 36. The solutions that survivethe Diophantine
conditions form theE8 family, listed in table17.1. The formulas (17.15), (17.16)
yield, upon substitution ofN , λ andλ , theA⊗A Clebsch-Gordan series for the
E8 family (table17.2).

Particularly interesting is the(36−m) factor in thed3 formula (17.40): positivity
of a dimension excludesm > 36 solutions, and vanishing of the corresponding
projection operator (17.33) for m = 36 implies a birdtrack identity valid only for
E8, the presumed key to the homework assignment (17.21). For inspiration, go
through the derivation of (18.37), the analogous 6-loop reduction formula forE6.
According to ref. [295], the smallest vacuum bubble that has no internal loop with
fewer than six edges has fourteen vertices and is called the “Coxeter graph."

Birdtracks yield theE8 family, but they do not tie it into the Cartan-Killing
theory. For that we refer the reader to the very clear [29] and thorough exposition
by Deligne [89]. All the members of the family are immediately identifiable, with
exception of them = 30 case. Them = 30 solution was found independently by
Landsberg and Manivel [209], who identify the corresponding column in table17.1
as a class of nonreductive algebras. Here this set of solutions will be eliminated by
(19.42), which says that it does not exist as a semisimple Lie algebra for theF4

subgroup ofE8.
The main result of all this heavy birdtracking is thatN > 248 is excluded by the

positivity of d3, andN = 248 is special, asP3 = 0 implies existence of a tensorial
identity on the Sym3A subspace specific toE8. That dimensions should all factor
into terms linear inm is altogether not obvious.
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m 5 8 9 10 12 15 18 24 30 36
A1 A2 G2 D4 F4 E6 E7 · E8

N 0 3 8 14 28 52 78 133 190 248
d3 0 0 1 7 56 273 650 1,463 1,520 0
d 0 –3 0 64 700 4,096 11,648 40,755 87,040 147,250
d

���
���
���

���
���
��� 0 0 27 189 1,701 10,829 34,749 152,152392,445 779,247

Table 17.1 All solutions of Diophantine conditions (17.13), (17.19), and (17.38).

17.4 DYNKIN LABELS AND YOUNG TABLEAUX FOR E8

A rep of E8 is characterized by 8 Dynkin labels(a1a2a3a4a5a6a7a8). The cor-
respondence between theE8 Dynkin diagram from table7.6, Dynkin labels, irre-
ducible tensor Young tableaux, and the dimensions [295] of the lowest reps is

1 2 3 4 5 6 7

8

↔ (a1a2a3a4a5a6a7a8) ↔ (17.41)


 , , , , , , ,


↔

(248, 30380, 2450240, 146325270, 6899079264, 6696000, 3875, 147250)

Labela1 counts the number of not antisymmetrized defining (= adjoint) represen-
tation indices. Labelsa2 througha5 count the number of antisymmetric doublets,
triplets, quadruplets, and quintuplets, respectively. Label a7 counts the number of
not antisymmetrized indices, anda6 the number of its antisymmetrized doublets.
The labela8 counts the number of .
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Dynkin labels

E8 (10000000) ⊗ (10000000) = (10000000) + (01000000) + (00000000) + (20000000) + (00000010)

E7 (1000000) ⊗ (1000000) = (1000000) + (0100000) + (0000000) + (2000000) + (0000100)

E6 (000001) ⊗ (000001) = (000001) + (001000) + (000000) + (000002) + (100010)

F4 (1000) ⊗ (1000) = (1000) + (0100) + (0000) + (2000) + (0010)

D4 (0100) ⊗ (0100) = (0100) + (1010) + (0000) + (0200) + (2000) + (0001)

G2 (10) ⊗ (10) = (10) + (03) + (00) + (20) + (02)

A2 (11) ⊗ (11) = (11) + (12) + (21) + (00) + (22) + (11)

A1 (2) ⊗ (2) = (2) + (0) + (4) + (4)

Dimensions N2 = N + N(N−3)
2

+ 1 + d + d

E8 2482 = 248 + 30, 380 + 1 + 27, 000 + 3, 875

E7 1332 = 133 + 8, 645 + 1 + 7, 371 + 1, 539

E6 782 = 78 + 2, 925 + 1 + 2, 430 + 650

F4 522 = 52 + 1, 274 + 1 + 1, 053 + 324

D4 282 = 28 + 350 + 1 + 300 + 35 + 35 + 35

G2 142 = 14 + 77 + 1 + 77 + 27

A2 82 = 8 + 10 + 10 + 1 + 27 + 8

A1 32 = 3 + 0 + 1 + 5 + 0

Table 17.2 E8 family Clebsch-Gordan series forA⊗A. Corresponding projection operators are given in (17.6), (17.15), and (17.16).
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⊗ = + + • + +

2482 = 27000 + 30380 + 1 + 248 + 3875

⊗ = + + +
�����
�����
�����

�����
�����
����� +

248 · 3875 = 248 + 3875 + 30380 +779247+ 147250

⊗ = + + + + +
�����
�����
�����

�����
�����
�����

27000 · 248 = 1763125 + 4096000 + 248 + 27000 + 30380 + 779247

⊗ = + + + + +

+
�����
�����
�����

�����
�����
����� +

30380 · 248 = 4096000 + 2450240 + 248 + 30380 + 27000 + 3875

+ 779247 + 147250

⊗ = + • + + + +

+ + + +
�����
�����
�����

�����
�����
�����

38752 = 4881384 + 1 + 27000 + 3875 + 2450240 + 147250

+ 6696000 + 30380 + 248 + 779247

⊗ =
������
������
������
������

������
������
������
������

+ + + +
�����
�����
�����

�����
�����
����� +

+ + +

⊗ = + +
�����
�����
�����
�����

�����
�����
�����
�����

+ + +

⊗ = + +
������
������
������
������

������
������
������
������

+ + +
�����
�����
�����

�����
�����
�����

⊗ = + + + + +

+ +
�����
�����
�����

�����
�����
����� + +

Table 17.3 Some of the low-dimensionalE8 Clebsch-Gordan series [354].
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Chapter Eighteen

E6 family of invariance groups

In this chapter, we determine all invariance groups whose primitive invariant tensors
areδab and fully symmetricdabc, dabc. The reduction ofV ⊗V space yields a rule
for evaluation of the loop contraction of fourd-invariants (18.9). The reduction of
V⊗V̄ yields the first Diophantinecondition (18.13) on the allowed dimensions of the
defining rep. The reduction ofV⊗V ⊗V tensors is straightforward, but the reduction
of A⊗V space yields the second Diophantine condition (d4 in table 18.4) and
limits the defining rep dimension ton ≤ 27. The solutions of the two Diophantine
conditions form theE6 familyconsisting ofE6, A5, A2+A2, andA2. For the most
interestingE6, n = 27 case, the cubic casimir (18.44) vanishes. This property of
E6 enables us to evaluate loop contractions of 6d-invariants (18.37), reduceV ⊗A
tensors (table18.5), and investigate relations among the higher-order casimirs ofE6

in section18.8. In section18.7we introduce a Young tableau notation for any rep of
E6 and exemplify its use in construction of the Clebsch-Gordanseries (table18.6).

18.1 REDUCTION OF TWO-INDEX TENSORS

By assumption, the primitive invariants set that we shall study here is

δba= ba

dabc=

b c

a

= dbac = dacb , dabc =

b c

a

. (18.1)

Irreducibility of the definingn-dimensional rep implies

dabcd
bcd=αδda

=α . (18.2)

The value ofα depends on the normalization convention. For example, Freuden-
thal [130] takesα = 5/2. Kephart [187] takesα = 10. We find it convenient to set
it to α = 1.

We can immediately write the Clebsch-Gordan series for the 2-index tensors. The
symmetric subspace in (9.4) is reduced by thedabcdcde invariant:

= +
1

α
+

{
− 1

α

}
. (18.3)

The rep dimensions and Dynkin indices are given in table18.1.
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= + 1
α

+

{

− 1
α

}

⊗ = ⊕ ⊕

E6 (000010) ⊗ (000010) = (000100) ⊕ (100000) ⊕ (000020)

A5 (00010) ⊗ (00010) = (00101) ⊕ (01000) ⊕ (00020)

A2 (02) ⊗ (02) = (12) ⊕ (20) ⊕ (04)

dimension n2 = n(n− 1)/2 + n + n(n− 1)/2

E6 272 = 351 + 27 + 351

A5 152 = 105 + 15 + 105

A2 + A2 92 = 36 + 9 + 36

A2 62 = 15 + 6 + 15

index 2nℓ = (n− 2)ℓ + ℓ + (n+ 1)ℓ

E6 2 · 27 · 1
4

= 25
4

+ 1
4

+ 7

A5 2 · 15 · 1
3

= 13
3

+ 1
3

+ 16
3

A2 + A2 2 · 9 · 1
2

= 7
2

+ 1
2

+ 5

A2 2 · 6 · 5
6

= 10
3

+ 5
6

+ 35
6

Table 18.1E6 family Clebsch-Gordan series Dynkin labels, dimensions, and Dynkin indices
for V ⊗V . The defining rep Dynkin indexℓ is computed in (18.14).

By the primitiveness assumption, anyV 2 ⊗ V̄ 2 invariant is a linear combination
of all tree invariants that can be constructed from the primitives:

= a + b + c . (18.4)

In particular,
1

α2
=

1

α2
=

A

α
+B . (18.5)

One relation on constantsA, B follows from a contraction withδba:

1

α2
=

A

α
+B

1=A+B
n+ 1

2
.

The other relation follows from the invariance condition (6.53) ondabc:

1

α
= −1

2
. (18.6)
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= 1
n

+ 1
a

+

label ⊗ = • ⊕ ⊕

E6 (000010) ⊗ (100000) = (000000) ⊕ (000001) ⊕ (100010)

A5 (00010) ⊗ (01000) = (00000) ⊕ (10001) ⊕ (01010)

A2 (02) ⊗ (20) = (00) ⊕ (11) ⊕ (22)

dimension n2 = 1 + 4n(n−1)
n+9

+ (n+3)2(n−1)
n+9

E6 272 = 1 + 78 + 650

A5 152 = 1 + 35 + 189

A2 + A2 92 = 1 + 16 + 64

A2 62 = 1 + 8 + 27

index 2nℓ = 0 + 1 + 2(n+3)2

n+9
ℓ

E6 2 · 27 · 1
4

= 0 + 1 + 50 · 1
4

A5 2 · 15 · 1
3

= 0 + 1 + 27 · 1
3

A2 + A2 2 · 9 · 1
2

= 0 + 1 + 16 · 1
2

A2 2 · 6 · 5
6

= 0 + 1 + 54
6

PA = 1
a

= 6
n+9

{

+ 1
3

− n+3
3α

}

PB = = n+3
n+9

{

− 3
n

+ 2
α

}

Table 18.2E6 family Clebsch-Gordan series forV ⊗V . The defining rep Dynkin indexℓ is
computed in (18.14).

Contracting (18.5) with (Ti)
b
a, we obtain

1

α2
=

A

α
+B

��
��
��
��

��
��
��
��

1

4
= −A

2
+

B

2
, A = − n− 3

2(n+ 3)
, B =

3

n+ 3
. (18.7)

18.2 MIXED TWO-INDEX TENSORS

Let us apply the above result to the reduction ofV⊗V̄ tensors. As always, they split
into a singlet and a traceless part (9.54). However, now there exists an additional
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invariant matrix

Qa
b
d
c =

b
��
��
��
��

c
��
��
��
��

d

���
���
���

���
���
���

���
���
���

���
���
������

���
���
���

a
, (18.8)

which, according to (18.5) and (18.7), satisfies the characteristic equation

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

��
��
��

��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

=A ���
���
���

���
���
���

���
���
���
���

���
���
���
�����

��
��

��
��
��

��
��
��

��
��
��

+
B

2

{
+

}

Q2=−1

2

n− 3

n+ 3
Q+

1

2

3

n+ 3
(T+ 1). (18.9)

On the tracelessV ⊗V̄ subspace, the characteristic equation forQ takes the form

P2

(
Q+

1

2

)(
Q− 3

n+ 3

)
= 0 , (18.10)

whereP2 is the traceless projection operator (9.54). The associated projection op-
erators (3.48) are

PA =
Q− 3

n+3

− 1
2 − 3

n+3

P2 , PB =
Q+ 1

2
3

n+3 + 1
2

P2 . (18.11)

Their birdtracks form and their dimensions are given in table18.2.
PA, the projection operator associated with the eigenvalue− 1

2 , is the adjoint rep
projection operator, as it satisfies the invariance condition (18.6). To compute the
dimension of the adjoint rep, we use the relation

− =
4

n+ 9

{
−

}
, (18.12)

that follows trivially from the form of the projection operatorPA in table18.2. The
dimension is computed by taking trace (3.52),

N = =
4n(n− 1)

n+ 9
. (18.13)

The 6-j coefficient, needed for the evaluation of the Dynkin index (7.27), can also
be evaluated by substituting (18.12) into

= +
4

n+ 9

{
0−

}

=N

(
1− 4

n+ 9

)
.

The Dynkin index for theE6 family defining rep is

ℓ =
1

6

n+ 9

n− 3
. (18.14)

18.3 DIOPHANTINE CONDITIONS AND THE E6 FAMILY

The expressions for the dimensions of various reps (see tables in this chapter) are
ratios of polynomials inn, the dimension of the defining rep. As the dimension of a
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rep should be a nonnegative integer, these relations are theDiophantine conditions
on the allowed values ofn. The dimension of the adjoint rep (18.13) is one such
condition; the dimension ofV4 from table18.4another. Furthermore, the positivity
of the dimensiond4 restricts the solutions ton ≤ 27. This leaves us with six
solutions:n = 3, 6, 9, 15, 21, 27. As we shall show in chapter21, of these solutions
only n = 21 is spurious; the remaining five solutions are realized as theE6 row of
the Magic Triangle (figure1.1).

In the Cartan notation, the corresponding Lie algebras areA2, A2 +A2, A5, and
E6. We do not need to prove this, as forE6 Springer has already proved the existence
of a cubic invariant, satisfying the relations required by our construction, and for the
remaining Lie algebras the cubic invariant is easily constructed (see section18.9).
We call these invariancegroups theE6 familyand list the correspondingdimensions,
Dynkin labels, and Dynkin indices in the tables of this chapter.

18.4 THREE-INDEX TENSORS

TheV ⊗V ⊗V tensor subspaces ofU(n), listed in table9.1, are decomposed by
invariant matrices constructed from the cubic primitivedabc in the following manner.

18.4.1 Fully symmetricV ⊗V ⊗V tensors

We substitute expansion from table18.1into the symmetric projection operator

= +

{
−

}
.

TheV ⊗V̄ subspace is decomposed by the expansion of table18.2:

=
1

n
+ + . (18.15)

The last term vanishes by the invariancecondition (6.53). To get the correct projector
operator normalization for the second term, we compute

=
1

3
+

2

3

=
1

3

(
1 + 2

3

n+ 3

)
=

n+ 9

3(n+ 3)
. (18.16)

Here, the second term is given by the -subspace eigenvalue (18.10) of the in-
variant matrixQ from (18.8). The resulting decomposition is given in table18.3.

18.4.2 Mixed symmetryV ⊗V ⊗V tensors

The invariantdabe(Ti)
e
c satisfies

=
4

3
. (18.17)
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Dynkin labels

E6 (000010)3 =(000030)⊕(100010)⊕(000000)⊕(000110)⊕ ⊕(000001)⊕ ⊕ ⊕ (001000)

A5 (00010)3 = (00030)⊕ (01010)⊕ (00000)⊕ (00111)⊕ ⊕ (10001)⊕ ⊕ ⊕ (00200)⊕(01002)

A2 (02)3 = (06) ⊕ (22) ⊕ (00) ⊕ (14) ⊕ ⊕ (11) ⊕ ⊕ ⊕ (03)⊕(30)

Dimensions n3 = n(n2
−1)(n+6)

6(n+9)
+ (n+3)2(n−1)

n+9
+ 1 + (n2

−1)(n−3)
3

+ 4n(n−1)
n+9

+ + + n(n−1)(n−2)
6

E6 273 = 3003 + 650 + 1 + 5834 + + 78 + + + 2925

A5 153 = 490 + 189 + 1 + 896 + + 35 + + + 175 + 280

A2 63 = 28 + 27 + 1 + 35 + + 8 + + + 10 + 10

Projection operators

P1 = −P2 −P3 , P2 = 3(n+3)
n+9

���
���
���
���

, P3 = 1
n

, P4 = 4
3

−P5 −P6

P5 = 8(n+3)
9

, P6 = , P10 =

Table 18.3E6 family Clebsch-Gordan series forV ⊗V ⊗V , with defined in table18.2. The dimensions and Dynkin labels of repeated reps are listed
only once.
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This follows from the invariance condition (6.53):

= + = − 1

2
= +

1

4
.

Hence, the adjoint subspace lies in the mixed symmetry subspace, projected by
(9.10). Substituting expansions of tables18.2and18.3, we obtain

=
4

3
+ − 4

3

= +

(
3

4

)2

. (18.18)

The corresponding decomposition is listed in table18.3. The other mixed symmetry
subspace from table9.1decomposes in the same way.

18.4.3 Fully antisymmetricV ⊗V ⊗V tensors

All invariant matrices on⊗V 3 → ⊗V 3, constructed fromdabc primitives, are
symmetric in at least a pair of indices. They vanish on the fully antisymmetric
subspace, hence, the fully antisymmetric subspace in table9.1is irreducible forE6.

18.5 DEFINING ⊗ ADJOINT TENSORS

We turn next to the determination of the Clebsch-Gordan series forV ⊗A reps. As
always, this series contains then-dimensional rep

=
n

Na
+

{
− n

Na

}
.

1= P1 + P5 (18.19)

Existence of the invariant tensor

(18.20)

implies thatV⊗A also contains a projection onto theV⊗V space. The symmetric rep
in (18.3) does not contribute, as thedabc invariance reduces (18.20) to a projection
onto theV space:

= −1

2
. (18.21)

The antisymmetrized part of (18.20),

R = , R† = , (18.22)
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projects out theV ⊗V antisymmetric intermediate state, as in (18.3):

P2 =
n+ 9

6

1

aα
RR† =

n+ 9

6aα
≡ . (18.23)

Here the normalization factor is evaluated by substitutingthe adjoint projection
operatorPA (table18.2) into

R†R = =
6

n+ 9
aα . (18.24)

In this way,P5 in (18.19) reduces toP5 = P2 +Pc,

Pc = − n

Na
− . (18.25)

However,Pc subspace is also reducible, as there exists still another invariant matrix
onV ⊗A space:

Q =
1

a
. (18.26)

We computeQ2Pc by substituting the adjoint projection operator and dropping the
terms that belong to projections ontoV andV ⊗V spaces:

PcQ
2=

1

a2
Pc

=Pc
6

n+ 9

{
+

1

3
· 0− n+ 3

3aα

}

=Pc
6

n+ 9

{
1− n+ 3

3aα
− 0

}

=Pc
6

n+ 9

{
1+

n+ 3

3aα

}

=Pc
6

n+ 9

{
1− n+ 3

6

1

a
+ 0

}
. (18.27)

The resulting characteristic equation is surprisingly simple:

Pc(Q+ 1)

(
Q− 6

n+ 9

)
= 0 . (18.28)

The associated projection operators and rep dimensions arelisted in table18.4.
The repV4 has dimension zero forn = 27, singling out the exceptional group

E6(27). Vanishing dimension implies that the corresponding projection operator
(4.22) vanishes identically. This could imply a relation betweenthe contractions of
primitives, such as theG2 alternativity relation implied by the vanishing of (16.30).
To investigate this possibility, we expandP4 from table18.4.

We start by using the invariance conditions and the adjoint projection operator
PA from table18.2to evaluate

����

=
n− 3

n+ 9
. (18.29)
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This yields

����

=
n− 3

n+ 9
(18.30)

P4=
n+ 9

n+ 15

{
1

4
− +

6

n+ 9
− n+ 3

n+ 9

}
.

Next, motivated by the hindsight of the next section, we rewriteP2 in terms of the
cubic casimir (7.44). First we use invariance and Lie algebra (4.47) to derive the
relation

= − 1

4
. (18.31)

We use the adjoint projection operator (18.11) to replace thedabcdcde pair in the
first term,

=
1

n+ 3

{
− n+ 9

2
+ 3 +

}
.

(18.32)
In terms of the cubic casimir (7.44), theP2 projection operator is given by

=
n+ 9

6(n+ 3)

{
−n+ 9

4
− n− 3

4

+
3

2
+

}
. (18.33)

Substituting back into (18.30), we obtain

P4 =
n+ 9

n+ 15

{
27− n

6

(
1

n+ 9
− 1

4

)
+

n+ 9

24

}
.

(18.34)
We shall show in the next section that the cubic casimir, in the last term, vanishes

for n = 27. Hence, each term in this expansion vanishes separately forn = 27, and
no new relation follows from the vanishing ofP4. Too bad.

However, the vanishing of the cubic casimir forn = 27 does lead to several
important relations, special to theE6 algebra. One of these is the reduction of the
loop contraction of 6dabc’s. ForE6 (18.33) becomes

E6 : =
1

5

{
+

3

2
− 6

}
. (18.35)

The left-hand side of this equation is related to a loop of 6dabc’s (after substituting
the adjoint projection operators):

E6 : = 6 − 3

2
. (18.36)
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The right-handside of (18.35) contains no loop contractions. Substituting the adjoint
operators in both sides of (18.35), we obtain a tree expansion for loops of length 6:

E6 :
1

α3
= (18.37)

1

500





3
2

{
+

}
− + + +

− 5
α

{
+ + + + +

}

+ 10
α

{
+ +

}
+ 15

α

− 50
α2

{
+ + + + +

}





At the time of writing this report, we lack a proof that we can compute any scalar
invariant built fromdabc contractions. However, the scalar invariants that we might
be unable to compute are of very high order, bigger than anything listed in table5.1,
as their shortest loop must be of length 8 or longer, with no less than 30 vertices
in a vacuum bubble. (See table 2 in ref. [295] for the minimal number of vacuum
bubble vertices for a given shortest loop, or “girth.")

The Dynkin indices (table18.4) are computed using (7.29) with λ = defining
rep,µ = adjoint rep,ρ = λ3, λ4

ℓρ =

(
ℓ

n
+

1

N

)
dρ −

2ℓ

N
ρ

. (18.38)

The value of the 6-jcoefficient follows from (18.28), the eigenvalues of the exchange
operatorQ.

18.6 TWO-INDEX ADJOINT TENSORS

A⊗A has the usual starting decomposition (17.7). As in section9.1, we study the
index interchange and the index contraction invariantsQ andR:

Q = , R = . (18.39)
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A⊗V = V1 ⊕ V2 ⊕ V3 ⊕ V4

Dynkin labels ⊗ = ⊕ ⊕

E6 (000001)⊗ (000010) = (000010) ⊕ (010000) ⊕ (000011)

A5 (10001)⊗ (00010) = (00010) ⊕ (10100) ⊕ (10011) ⊕ (00002)

A2 (11)⊗ (02) = (02) ⊕ (21) ⊕ (13) ⊕ (10)

Dimensions nN = n + n(n−1)
2

+ 4n(n+1)(n−3)
n+15

+ n(n−1)(n−3)(27−n)
2(n+9)(n+15)

E6 27 · 78 = 27 + 351 + 1728 + 0

A5 15 · 35 = 15 + 105 + 384 + 21

A2 +A2 9 · 16 = 9 + 36 + 90 + 9

A2 6 · 8 = 6 + 15 + 24 + 3

Dynkin indices n+Nℓ = ℓ + (n− 2)ℓ + 5(n+1)(n+9)
3(n+15)

+ (n−5)(27−n)
6(n+15)

E6 27 + 78
4

= 1
4

+ 25
4

+ 40 + 0

A5 15 + 35
3

= 1
3

+ 13
3

+ 64
3

+ 2
3

A2 +A2 9 + 16
2

= 1
2

+ 7
2

+ 25
2

+ 1
2

A2 6 + 8·5
6

= 5
6

+ 10
3

+ 25
3

+ 1
6

Projection operators

P1 = n
Na

, P4 = n+9
n+15

{

1
a

+ 6
n+9

} C

P2 = = n+9
6

1
a

1
α

, Pc = − n
Na

−

P3 = n+9
n+15

{

− 1
a

+

} C

Table 18.4E6 family Clebsch-Gordan series forA⊗V .
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The decomposition induced byR follows from table18.2; it decomposes the sym-
metric subspacePs

PsRPs =
1

a3
+

1

a2
. (18.40)

By (9.80) R has no effect on the antisymmetric subspacesPA,Pa. The correspond-
ing projection operators are normalized by evaluating

1

a3
=

(27− n)(n+ 1)

2(n+ 9)2

1

a2
=

12(n− 3)

(n+ 9)2
. (18.41)

Such relations are evaluated by substituting the Clebsch-Gordan series of table18.2

into , which yields

=
16

(n+ 9)2

{
+ (n− 2) +

(n+ 1)(n+ 9)

16

}
.

Equation (18.41) then follows by substitution into

= − CA

4
= −a2

2

(n+ 1)(n− 27)

(n+ 9)2
. (18.42)

This implies that the norm of the cubic casimir (7.44) is given by
1

N
dijkdijk =

1

N
= 4

1

N
= 2a3

(n+ 1)(27− n)

(n+ 9)2
. (18.43)

Positivity of the norm restrictsn ≤ 27. ForE6 (n = 27), the cubic casimir vanishes
identically:

E6 : = 0 . (18.44)

18.6.1 Reduction of antisymmetric three-index tensors

Consider the clebsch for projecting the antisymmetric subspace ofV ⊗V ⊗V onto
A⊗A. By symmetry, it projects only onto the antisymmetric subspace ofA⊗A:

= . (18.45)

Furthermore, it does not contribute to the adjoint subspace:

= − + = 0 . (18.46)

That both terms vanish can easily be checked by substitutingthe adjoint projection
operator (table18.2). Furthermore, by substituting (18.37) we have

E6 n = 27 : =
1

30
. (18.47)

This means that forE6 reps and fully antisymmetrized 3-index tensors are equiv-
alent.
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A⊗A = V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ V5 ⊕ V6 ⊕ V7

label ⊗ = • ⊕ · ⊕ ⊕ ⊕ ⊕

E6 (000001)2 = (000000) + · + (100010) + (000002) + (000001) + (00100)

A5 (10001)2 = (00000) + (10001) + (01010) + (20002) + (10001) + (01002) + (20010)

A2 (11)2 = (00) + (11) + (22) + (11) + (03) + (30)

dimension N2 = 1 + N(1− δn,27) + (n+3)2(n−1)
n+9

+ + N +

E6 782 = 1 + 0 + 650 + 2430 + 78 + 2925

A5 352 = 1 + 35 + 189 + 405 + 35 + 280 + 280

A2 + A2 162 = 1 + 16 + + + 16 + 52 + 52

A2 82 = 1 + 8 + 0 + 27 + 8 + 10 + 10

Projection operators forE6(n = 27):

P1 = 1
78

, P4 = −P1 −P3 , P6 = −P5

P3 = 650 , P5 = 78

Table 18.5E6 family Clebsch-Gordan series ofA⊗A.
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18.7 DYNKIN LABELS AND YOUNG TABLEAUX FOR E6

A rep ofE6 is characterized by six Dynkin labels(a1a2a3a4a5a6). The correspond-
ing Dynkin diagram is given in table7.6. The relation of the Dynkin labels to the
Young tableaux (section7.9) is less obvious than in the case ofSU(n), SO(n), and
Sp(n) groups, because forE6 they correspond to tensors made traceless also with
respect to the cubic invariantdabc.

The first three labelsa1, a2, a3 have the same significance as for theU(n) Young
tableaux.a1 counts the number of (not antisymmetrized) contravariant indices
(columns of one box��������

����
����). a2 counts the number of antisymmetrized contravariant

index pairs (columns of two boxes). a3 is the number of antisymmetrized covari-
ant index triples. That is all as expected, as the symmetric invariantdabc cannot
project anything from the antisymmetric subspaces. That iswhy the antisymmetric
reps in table18.1and table18.3have the same dimension as forSU(27).

However, according to (18.47), an antisymmetric contravariant index triple is
equivalent to an antisymmetric pair of adjoint indices. Hence, contrary to theU(n)
intuition, this rep isreal. We can use the clebsches from (18.47) to turn any set of
3p antisymmetrized contravariant indices intop adjoint antisymmetric index pairs.
For example, forp = 2 we have

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

=
1

302

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
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��
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��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

≡ . (18.48)

Hence, a column of more than two boxes is always reduced modulo 3 toa3 antisym-
metric adjoint pairs (in the above examplea3 = p), that we shall denote by columns
of two crossed boxes.

In the same fashion, the antisymmetric covariant indexn-tuples contribute toa3,
the number of antisymmetric adjoint pairs, a4 antisymmetrized covariant index
pairs , anda5 (not antisymmetrized) covariant indices.

Finally, taking a trace of a covariant-contravariant indexpair implies removing
both a singletandan adjoint rep. We shall denote the adjoint rep by. The number
of (not antisymmetrized) adjoint indices is given bya6. For example, anSU(n)
tensorxa

b ∈ V ⊗ V̄ decomposes into three reps of table18.2. The first one is the
singlet (000000), that we denote by•. The second one is the adjoint subspace
(0000001) = . The remainder is labeled by the number of covariant indices
a1 = 1, and contravariant indicesa5 = 1, yielding(100010) = rep.

Any set of2p antisymmetrized adjoint indices is equivalent top symmetrizedpairs
by the identity

p2

...

2
1

=

p}

}  2

}  1

...

}  3 = +

...

= + = · · · (18.49)

This reduces any column of threeor more antisymmetric indices. We conclude that

any irreducibleE6 tensor can, therefore, be specified by six numbersa1, a2, ...a6.
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An E6 tensor is made irreducible by projecting out all invariant subspaces. We
do this by identifying all invariant tensors with right indices and symmetries and
constructing the corresponding projection operators, as exemplified by tables18.1
through18.5. If we are interested only in identifying the terms in a Clebsch-Gordan
series, this can be quickly done by listing all possible nonvanishing invariant pro-
jections (many candidates vanish by symmetry or the invariance conditions) and
checking whether their dimensions (from the Patera-Sankoff tables [274]) add up.
Examples are given in table18.6.

To summarize, the correspondence between theE6 Dynkin diagram from ta-
ble 7.6, Dynkin labels, irreducible tensors, and the dimensions ofthe lowest corre-
sponding reps is

4

6

1 52 3

↔ (a1, a2, a3, a4, a5, a6) ↔

( , , , , , ) ↔ (27, 351, 2925, 351, 27, 78) (18.50)

a1 = number of not antisymmetrized contravariant indices

a2 = number of antisymmetrized contravariant pairs

a3 = number of antisymmetrized adjoint index pairs = =

a4 = number of antisymmetrized covariant pairs

a5 = number of not antisymmetrized covariant indices

a6 = number of not antisymmetrized adjoint indices
For example, the Young tableau for the rep (2,1,3,2,1,2) canbe drawn as

. (18.51)

The difference in the number of the covariant and contravariant indices

a1 + 2a2 − 2a4 − a5 (mod3) (18.52)

is calledtriality . Modulo 3 arises because of the conversionof antisymmetrictriplets
into the real antisymmetric adjoint pairs by (18.47). The triality is a useful check of
correctness of a Clebsch-Gordan series, as all subspaces inthe series must have the
same triality.

18.8 CASIMIRS FOR E6

In table7.1we have listed the orders of independent casimirs forE6 as 2, 5, 6, 8, 9,
12. Here we shall use our construction ofE6(27) to partially prove this statement.
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27 · 27 351 351 27

⊗ = + +

27 · 27 = 650 1 78

⊗ = + • +

351 · 27 5824 2925 650 78

⊗ = + + +

27 · 351 7371 27 1728 351

⊗ = + + +

27 · 78 1728 27 351

⊗ = + +

78 · 78 2925 2430 1 78 650

⊗ = + + • + +

351 · 27 5824 3003 650

⊗ = + +

27 · 351 7722 27 1728

⊗ = + +

650 · 27 7722 7371 351 351 1728 27

⊗ = + + + + +

331 · 78 17550 351 351 27 7311 1728

⊗ = + + + + +

2925 · 27 51975 1728 17550 7371 351

⊗ = + + + +

Table 18.6 Examples of theE6 Clebsch-Gordan series in terms of the Young tableaux.
Various terms in the expansion correspond to projections onvarious subspaces,
indicated by the Clebsch-Gordan coefficients listed on the right. See tables18.1
through18.5for explicit projection operators.
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By the hermiticity ofTi, the fully symmetric tensordijk from (18.43) is real, and

= (dijk)
2 ≥ 0. (18.53)

By (18.43), this equals

=
a3

2

(n+ 1)(27− n)

(n+ 9)2
N. (18.54)

The cubic casimirdijk vanishes identicallyfor E6.
Next we prove that thequartic casimir for E6 is reducible. From table18.1

expression for the adjoint rep projection operator we have

=
3

n+ 3

{
−n+ 9

6
+

1

3
+

}
, (18.55)

which yields

=
3

n+ 3

{
− n+ 9

6
+ +

1

3

}
. (18.56)

Now the quartic casimir. By the invariance (6.53)

= −2 = 2 + 2 . (18.57)

The second term vanishes by the invariance (6.53):

== = 0 . (18.58)

Substituting (18.32), we obtain

= −n+ 9

n− 3
+

2

n− 3
. (18.59)

ForE6 the cubic casimir vanishes, and consequently the quartic casimir is a square
of the quadratic casimir:

E6 : trX4 =
1

12
(trX2)2 . (18.60)

Thequintic casimirtrX5 for E6 must be irreducible, as it cannot be expressed as
a power oftrX2. We leave it as an exercise to the reader to prove thattrX6 is
irreducible.

The reducibility oftrX7 can be demonstrated by similar birdtrack manipulations,
but as the higher irreducible casimirs are beyond manual calculation (according to
table7.1 the Betti numbers forE6 are2, 5, 6, 8, 9, 128, 9, 12), this task is better
left to a computer [295].
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18.9 SUBGROUPS OFE6

Why is A2(6) in the E6 family? The symmetric 2-index rep (9.2) of SU(3) is
6-dimensional. The symmetric cubic invariant (18.2) can be constructed using a pair
of Levi-Civita tensors,

= . (18.61)

Contractions of severaldabc’s can be reduced using the projection operator properties
(6.28) of Levi-Civita tensors, yielding expressions such as

A2(6) :
1

α
=

1

3

{
+ − 2

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

}
, (18.62)

1

a
=

4

5

{
− 1

3

}
, etc.. (18.63)

The reader can check that, for example, the Springer relation (18.65) is satisfied.

Why is A5(15) in the E6 family? The antisymmetric 2-index rep (9.3) of A5 =
SU(6) is 15-dimensional. The symmetric cubic invariant (18.2) is constructed using
the Levi-Civita invariant (6.27) for SU(6):

= . (18.64)

The reader is invited to check the correctness of the primitiveness assumption (18.5).
All other results of this chapter then follow.

Is A2 + A2(9) in the E6 family? Exercise for the reader: unravel theA2 + A2

9-dimensional rep, construct thedabc invariant.

18.10 SPRINGER RELATION

SubstitutingPA into the invariance condition (6.53), one obtains theSpringer rela-
tion [315, 316]

=
1

3



 + +



 =

4α

n+ 3
. (18.65)

The Springer relation can be used to eliminate one of the three possible contractions
of threedabc’s. For theG2 family it was possible to reduceanycontraction of three
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fabc’s by (16.15); however, a single chain of threedabc’s cannotbe reducible. If it
were, symmetry would dictate a reduction relation of the form

= A



 +



 . (18.66)

Contracting withdabc one finds that contractions of pairs ofdabc’s should also be
reducible:

= A



 +



 . (18.67)

Contractions of this relation withdabc andδab yieldsn = 1, i.e., reduction relation
(18.66) can be satisfied only by a trivial 1-dimensional defining rep.

18.11 SPRINGER’S CONSTRUCTION OFE6

In the preceding sections we have given a self-contained derivation of theE6 family,
in notation unfamiliar to the handful of living experts on this subject. Here we
translate our results into the more established algebraic notation, and identify the
relations already given in the literature.

Definition (Springer [315, 316]). Let V , V̄ be finite-dimensional vector spaces
paired by an inner product〈x̄, x〉 (see section3.1.2). Assume existence of symmetric
trilinear forms〈x, y, z〉, 〈x̄, ȳ, z̄〉. If x, y ∈ V , there exists by dualityx × y ∈ V̄
such that

3〈x, y, z〉 = 〈x × y, z〉 , (18.68)

with the x̄ × ȳ ∈ V product defined similarly. Assume that the× product satisfies
Springer relation[130]

(x× x) × (x× x) = 〈x, x, x〉x (18.69)

(together with the corresponding formula forx → x̄). Springer proves that the ex-
ceptional simple Jordan algebra of[3 × 3] hermitian matricesx with octonionic
matrix elements [129, 130, 305, 168] satisfies these assumptions, and that the char-
acteristic equation for[3× 3]matrixx yields the relation (18.69). Our purpose here
is not to give an account of Freudenthal theory, but to aid thereader in relating the
birdtrack notation to Freudenthal-Springer octonionic formulation. The reader is
referred to the cited literature for the full exposition andproofs.

The nonassociative multiplication rule for elementsx can be written in an or-
thonormal basisx = xae

a, x̄ = xaea,

〈ea, eb〉 = δba , a, b = 1, 2, ......, 27 . (18.70)
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Expandx, x̄ and define [150]

ea × eb = dabcec . (18.71)

Expressed in this basis, (18.69) is the Springer relation (18.65), with α = 5/2.
Freudenthal and Springer prove that (18.69) is satisfied ifdabc is related to the
Jordan product

ea · eb = d̂abcec

by

dabc ≡ d̂abc − 1

2
[δab tr(ec) + δac tr(eb) + δbc tr(ea)] +

1

2
tr(ea) tr(eb) tr(ec) .

The definingn = 27 representation ofE6 is the group of isomorphisms that leave
〈x̄, y〉 = δbax

ayb and 〈x, y, z〉 = dabcxaybzc invariant. The “derivation" (4.25)
V 2 ⊗ Ṽ = V ⊗A → V is given by Freudenthal, equation (1.21) in ref. [129]:

Dz ≡ [x, ȳ] z = 2ȳ × (x× z)− 1

2
〈ȳ, z〉x− 1

6
〈ȳ, x〉 z .

Expressed in the basis (18.70), this is the adjoint projection operatorPA (table18.2),

(Dz)d = −3 xay
b(PA)

a
b
c
d zc . (18.72)

The invariance of thex-product is given by Freudenthal as

〈Dx, x × x〉 = 0.

Expressed in the basis (18.70) this is the invariance condition (6.53) for dabc.
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Chapter Nineteen

F4 family of invariance groups

In this chapter we classify and construct all invariance groups whose primitive invari-
ant tensors are a symmetric bilineardab, and a symmetric trilineardabc, satisfying
the relation (19.16).

Take as primitives a symmetric quadratic invariantdab and a symmetric cubic
invariantdabc. As explained in chapter12, we can usedab to lower all indices. In the
birdtrack notation, we drop the open circles denoting symmetric 2-index invariant
tensordab, and we drop arrows on all lines:

dab=dab = ,

dabc=dbac = dacb =

a

b c

= . (19.1)

The definingn-dimensional rep is by assumption irreducible, so

dabcdbcd= = α = α δad (19.2)

dabb = = 0 . (19.3)

Were (19.3) nonvanishing, we could use to project out a 1-dimensional
subspace, violating the assumption that the defining rep is irreducible. The value of
α depends on the normalization convention (Schafer [305] takesα = 7/3).

19.1 TWO-INDEX TENSORS

dabc is a clebsch forV ⊗V → V , so without any calculation theV ⊗V space is
decomposed into four subspaces:

= +
1

n
+

1

α

+

{
− 1

α
− 1

n

}
,

1=P +P• +P +P3 . (19.4)

We turn next to the decompositions induced by the invariant matrix

Qab,cd =
1

α
. (19.5)
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I shall assume thatQ does not decompose the symmetric subspace,i.e., that its
symmetrized projection can be expressed as

1

α
=

A

α
+B + C . (19.6)

Together with the list of primitives (19.1), this assumptiondefinestheF4 family.
This corresponds to the assumption (16.3) in the construction ofG2. I have not been
able to construct theF4 family without this assumption.

Invariance groups with primitivesdab, dabc that do not satisfy (19.6) do exist.
The familiar example [73, 41] is the adjoint rep ofSU(n), n ≥ 4, wheredabc is the
Gell-Mann symmetric tensor (9.87).

Let us first dispose of the possibility that the invariant 4-tensors in (19.6) satisfy
additional relationships. Symmetrizing (19.6) in all legs, we obtain

1−A

α
= (B + C) . (19.7)

Neither of the tensors can vanish, as contractions withδ’s would lead to

0 = ⇒ n+ 2 = 0, 0 = ⇒ α = 0 . (19.8)

If the coefficients were to vanish,1−A = B + C = 0, we would have

1

αB

{
−

}
= − . (19.9)

Antisymmetrizing the top two legs, we find that

1

αB
= . (19.10)

In this case the invariant matrixQ of (19.5) can be eliminated,

= +
α

n− 1

{
−

}
, (19.11)

and does not split the antisymmetric part of (19.4). In that case the adjoint rep of
SO(n) would also be the adjoint rep for the invariance group ofdabc. However, the
invariance condition

0 = (19.12)

cannot in this case be satisfied for any positive dimensionn:

0 =

��������
��������
��������
��������

⇒ 0 = − ⇒ n+ 1 = 0 . (19.13)
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Hence the coefficients in (19.7) are nonvanishing, and there are no additional rela-
tions beyond (19.6). The coefficients are fixed by tracing withδab:

1

α
=

2

n+ 2
. (19.14)

Expanding the symmetrization operator, we can write this relation as
1

α
+

1

2α
=

2

n+ 2
+

1

n+ 2
, (19.15)

or, more symmetrically, as

+ + =
2α

n+ 2

{
+ +

}
,

dabedecd + dadedebc + dacedebd=
2α

n+ 2
(δabδcd + δadδbc + δacδbd) . (19.16)

In section19.3, we shall show that this relation can be interpreted as the characteristic
equation for [3×3] octonionic matrices. This is thedefining relationfor the F4

family, equivalent to the assumption (19.6).
The eigenvalue of the invariant matrixQ on then-dimensional subspace can now

be computed from (19.15):
1

α
+

1

2
=

2

n+ 2
,

1

α
= −1

2

n− 2

n+ 2
. (19.17)

Let us now turn to the action of the invariant matrixQ on the antisymmetric
subspace in (19.4). We evaluateQ2 with the help of (19.16) and the identity (6.60),
replacing the topdabedecd pair by

=− −

+
2α

n+ 2

{
+ α

}

0=A

(
Q2 − 1

2

n− 6

n+ 2
Q− 2

n+ 2
1

)
. (19.18)

The roots areλ = −1/2, λ = 4/(n+ 2), and the associated projectors yield the
adjoint rep and the antisymmetric rep

P =
8

n+ 10

{
+

n+ 2

4α

}
(19.19)

P =
n+ 2

n+ 10

{
− 2

α

}
. (19.20)

P is the projection operator for the adjoint rep, as it satisfies the invariance condition
(19.12). The dimensions of the two representations are

N = trP =
3n(n− 2)

n+ 10
, d = trP =

n(n+ 1)(n+ 2)

2(n+ 10)
, (19.21)

and the Dynkin index of the defining representation is

ℓ =
n+ 10

5n− 22
. (19.22)
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19.2 DEFINING ⊗ ADJOINT TENSORS

TheV ⊗A space always contains the defining rep:

=
n

aN
+

{
− n

aN

}
.

1= P6 + P7 . (19.23)

We can usedabc and(Ti)ab to project aV ⊗V subspace fromV ⊗A:

Ria,bc =
c

ba

i
. (19.24)

By the invariance condition (19.12), R projects the symmetrizedV ⊗V subspace
ontoV

= −1

2
. (19.25)

Hence,R maps theP7 subspace only onto the antisymmetrizedV ⊗V :

P7R=RA

P7 = . (19.26)

The V ⊗V space was decomposed in the preceding section. Using (19.19) and
(19.20), we have

= +
5

. (19.27)

TheP7 space can now be decomposed as

P7=P8 +P9 +P10

− n

aN
=

N
+

d

5

5
+P10 . (19.28)

Here,

=
1

a
���������

���
���

���
���
���

���
���
���
��� ���

���
���

���
���
���

,

5
= − , (19.29)

and the normalization factors are the usual normalizations(5.8) for 3-vertices. An
interesting thing happens in evaluating the normalizationfor theP8 subspace: sub-

stituting (19.19) into 1
α

���
���
���
���

���
���
���

���
���
���

���
���
���
���

����
����
����

����
����
���� , we obtain

1

N
=

1

αa2
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

=
26− n

4(n+ 10)
,

1

d
5

=
6(n− 2)

(n+ 2)(n+ 10)
. (19.30)
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The normalization factor is a sum of squares of real numbers:

=
1

αa2

∑

i,j,a

[(Ti)bcdacd(Tj)db]
2 ≥ 0 . (19.31)

Hence, eithern = 26 orn < 26. We must distinguish between the two cases: as the
corresponding clebsches are identically zero,

n = 26 : = 0 , (19.32)

andP7 subspace in (19.28) does not contain the adjoint rep, (19.28) is replaced by

n = 26 : − n

aN
=

d

5

5
+P10 . (19.33)

Another invariant matrix onV⊗A space can be formed from two(Ti)ab generators:

Q = . (19.34)

We computeP10Q
2 by substituting the adjoint projection operator by (19.19),

using the characteristic equation (19.15) and the invariance condition (19.12), and
dropping the contributions to the subspaces already removed fromP10:

P10 =P10
8

n+ 10

{
+

n+ 2

4α

}

=P10
4

n+ 10

{
1−Q+

n+ 2

4α

(
−

)}

=P10
4

n+ 10

{
1−Q− n+ 2

4α

(
��
��
��

��
��
��

+ 2 ����
����
����
����

)

+
1

2
+

1

2

}

=P10
2

n+ 10

{
3 1−Q− n+ 2

α

(
��
��
��
��

��
��
��

��
��
��

−
��
��
��
��

��
��
��

��
��
�� )}

=P10
2

n+ 10

{
3 1− n+ 4

2
Q+ (vanishing)

}
. (19.35)

HenceQ2 satisfies a characteristic equation

0 = P10

(
Q2 +

n+ 4

n+ 10
Q− 6

n+ 10
1

)
, (19.36)

with rootsα11 = −1,α12 = 6/(n+10), and the correspondingprojection operators

P11=P10
n+ 10

n+ 16

(
6

n+ 10
1−Q

)
, (19.37)

P12=P10
n+ 10

n+ 16
(1+Q) . (19.38)
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To use these expressions, we also need to evaluate the eigenvalues of the invariant
matrixQ on subspacesP6,P8, andP9 :

QP6 =
n

aN
=

(
N

n
− CA

2

)
P6 =

1

2
P6 . (19.39)

We find it somewhat surprising that this eigenvalue does not depend on the dimension
n.

QP8=
N

= − N ����

=−N

2n
P8 = − 3(n− 2)

2(n+ 10)
P8

QP9=− n− 8

n+ 10
P9 . (19.40)

These relations are valid for anyn.
Now we can evaluate the dimensions of subspacesP11,P12. We obtain forn < 26

d11=trP11 =
n(n− 2)(n− 5)(14− n)

2(n+ 10)(n+ 16)
, (19.41)

d12=trP12 =
3n(n+ 1)(n− 5)

n+ 16
. (19.42)

A small miracle has taken place: onlyn = 26 andn ≤ 14 are allowed. However,
d12 < 0 forn < 5 does not exclude then = 2 solution, as in that case the dimension
of the adjoint rep (19.19) is identically zero, andV⊗Adecomposition is meaningless.

For n = 26,P10 is defined by (19.33), the adjoint rep does not contribute, and
the dimensions are given by

n = 26 : d11 = 0, d12 = 1053 . (19.43)

If a dimension is zero, the corresponding projection operator vanishes identically,
and we have a relation between invariants:

0 = P11 = P10

(
1

6
1−Q

)
= (1−P6 −P9)

(
1

6
1−Q

)
.

Substituting the eigenvalues ofQ, we obtain a relation specific toF4

n = 26 : =
1

6
+

1

6
− 14

3
. (19.44)

Hence, forF4 Lie algebra (n = 26) the two invariants,R in (19.26) andQ in (19.34),
are not independent.

By now the (very gifted) reader has the hang of it, and can complete the calculation
on her own: if so, the author would be grateful to see it. The 2-index adjoint tensors
decomposition proceeds in what, by now, is a routine: one first notes thatA⊗A
always decomposes into at least four reps (17.6). Then one constructs an invariant
tensor that satisfies a characteristic equation on theA⊗A space, and so on. Some of
these calculations are carried out in ref. [74], sections 15, 20, and appendix, p. 97.
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⊗ = + + • + +

262 = 324 + 26 + 1 + 273 + 52

⊗ = + +

52 · 26 = 1053 + 26 + 273

⊗ = + + + • +

522 = 1053 + 1274 + 52 + 1 + 324

⊗ = + + + + +

324 · 26 = 2652 + 4096 + 26 + 273 + 324 + 1053

⊗ = + + + + + +

273 · 26 = 4096 + 1274 + 324 + 273 + 52 + 26 + 1053

Table 19.1 Kronecker products for the five lowest-dimensional reps ofF4, where is the
26-dimensional defining rep, andthe 52-dimensional adjoint rep. See Pateraet
al. [236] and ref. [194] for tabulations of higher-order series.

19.3 JORDAN ALGEBRA AND F4(26)

As in section18.11, consider the exceptional simple Jordan algebra of hermitian
[3×3] matrices with octonionic matrix elements. The nonassociative multiplication
rule for tracelessoctonionic matricesx can be written, in a basisx = xaea, as

eaeb = ebea =
δab
3

I+ dabcec , a, b, c ∈ {1, 2, . . . , 26} , (19.45)

wheretr(ea) = 0, andI is the [3×3] unit matrix. Traceless [3×3] matrices satisfy
the characteristic equation

x3 − 1

2
tr(x2)x− 1

3
tr(x3) I = 0 . (19.46)

Substituting (19.45) we obtain (19.14), with normalizationα = 7/3. It is interesting
to note that the Jordan identity [305],

(xy)x2 = x(yx2) (19.47)

(which defines Jordan algebra in the way Jacobi identity defines Lie algebra) is
a trivial consequence of (19.14). Freudenthal [130] and Schafer [305] show that
the group of isomorphisms that leave formstr(xy) = δabxaxb and tr(xyz) =
dabcxaybzc invariant isF4(26). The “derivation” (i.e., Lie algebra generators) is
given by Tits:

Dz = (xz)y − x(zy) [eq. (28) in ref. [326]]. (19.48)
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Substituting (19.45), we recover then = 26 case of the adjoint rep projection
operator (19.19):

(Dz)d = −xayb

(
1

3
(δadδbc − δacδbd) + (dbcedead − dacedebd)

)
zc . (19.49)

19.4 DYNKIN LABELS AND YOUNG TABLEAUX FOR F4

The correspondencebetween thef4 Dynkin diagram from table7.6, the four Dynkin
labels, irreducible tensor Young tableaux, and the dimensions of the lowest corre-
sponding reps is

���� ����

41 2 3 ↔ (a1a2a3a4) ↔
(

, , ,
)

↔ (52, 1274, 273, 26) . (19.50)
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Chapter Twenty

E7 family and its negative-dimensional cousins

Parisi and Sourlas [270] have suggested that a Grassmann vector space of dimension
n can be interpreted as an ordinary vector space of dimension−n. As we have seen in
chapter13, semisimple Lie groups abound with examples in which ann → −n sub-
stitution can be interpreted in this way. An early example was Penrose’s binors [281],
reps ofSU(2) = Sp(2) constructed asSO(−2), and discussed here in chapter14.
This is a special case of a general relation betweenSO(n) andSp(−n) established
in chapter13; if symmetrizations and antisymmetrizations are interchanged, reps
of SO(n) becomeSp(−n) reps. Here we work out in detail a 1977 example of a
negative-dimensions relation [74], subsequently made even more intriguing [78] by
Cremmer and Julia’s discovery of a globalE7 symmetry in supergravity [68].

We extend the Minkowski space into Grassmann dimensions by requiring that
the invariant length and volume that characterize the Lorentz group (SO(3, 1) or
SO(4) — compactness plays no role in this analysis) become a quadratic and a
quartic supersymmetric invariant. The symmetry group of the Grassmann sector
will turn out to be one ofSO(2),SU(2),SU(2)×SU(2)×SU(2),Sp(6),SU(6),
SO(12), orE7, which also happens to be the list of possible global symmetries of
extended supergravities.

As shown in chapter10,SO(4) is the invariance group of the Kronecker deltagµν
and the Levi-Civita tensorεµνσρ; hence, we are looking for the invariance group of
the supersymmetric invariants

(x, y)=gµνx
µyν ,

(x, y, z, w)=eµνσρx
µyνzσwρ , (20.1)

whereµ, ν, . . . = 4, 3, 2, 1,−1,−2, . . . ,−n. Our motive for thinking of the Grass-
mann dimensions as−n is that we define the dimension as a trace (3.52),n = δµµ, and
in a Grassmann (or fermionic) world each trace carries a minus sign. For the quadratic
invariantgµν alone, the invariance group is the orthosymplecticOSp(4, n). This
group [177] is orthogonal in the bosonic dimensions and symplectic in the Grass-
mann dimensions, because ifgµν is symmetric in theν, µ > 0 indices, it must be
antisymmetric in theν, µ < 0 indices. In this way the supersymmetry ties in with
theSO(n) ∼ Sp(−n) equivalence developed in chapter13.

Following this line of reasoning, a quartic invariant tensor eµνσρ, antisymmetric in
ordinary dimensions, is symmetric in the Grassmann dimensions. Our task is then
to determine all groups that admit an antisymmetric quadratic invariant, together
with a symmetric quartic invariant. The resulting classification can be summarized
by

symmetricgµν + antisymmetricfµνσρ : (20.2)
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(A1 +A1)(4), G2(7), B3(8), D5(10)

antisymmetricfµν + symmetricdµνσρ :

SO(2), A1(4), (A1 +A1 +A1)(8), C3(14), A5(20), D6(32), E7(56) ,

where the numbers in( ) are the defining rep dimensions. The second case generates
a row of the Magic Triangle (figure1.1).

From the supergravity point of view, it is intriguing to notethat the Grassmann
space relatives of ourSO(4)world includeE7,SO(12), andSU(6) in the same reps
as those discovered by Cremmer and Julia. Furthermore, it appears thatall seven
possible groups can be realized as global symmetries of the seven extended super-
gravities, if one vector multiplet is added toN = 1, 2, 3, 4 extended supergravities.

In sections.20.1–20.3, we determine the groups that allow a symmetric quadratic
invariant together with an antisymmetric quartic invariant. The end result of the
analysis is a set of Diophantine conditions, together with the explicit projection
operators for irreducible reps. In section20.4, the analysis is repeated for an anti-
symmetric quadratic invariant together with a symmetric quartic invariant. We find
the same Diophantine conditions, with dimensionn replaced by−n, and the same
projection operators, with symmetrizations and antisymmetrizations interchanged.

Parenthetically, you might wonder, how does one figure out such things without
birdtracks? I cannot guess, and I suspect one does not. In this chapter theE7 family
is derived diagrammatically, following ref. [74], but as experts with a more algebraic
mindset used to find birdtracks very foreign, in ref. [78] we hid our tracks behind
the conventional algebraic notation of Okubo [256]. The reader can decide what is
easier to digest, algebraic notation or birdtracks.

20.1 SO(4) FAMILY

According to table10.1, the flipσ from (6.2) together with the index contractionT
from (10.8) decomposeV ⊗V of SO(n) into singlet (10.11), traceless symmetric
(10.10), and antisymmetric adjoint (10.12) subspaces,V⊗V = V1 ⊕V2 ⊕V3. Now
demand, in addition to the above set ofV 4 invariant tensors, the existence of a fully
antisymmetric primitivequartic invariant,

fµνρδ =−fνµρδ = −fµρνδ = −fµνδρ =

fµνρδ = . (20.3)

As fµνρδ is of even rank and thus anticyclic,fµνρδ = −fνρδµ, we deploy the black
semicircle birdtrack notation (6.57) in order to distinguish the first leg.

The onlyV ⊗V → V ⊗V invariant matrix that can be constructed from the new
invariant and the symmetric bilinear tensor (10.2) is

Qµ
ν
ν′

µ′ = gµεfνεµ′σg
σν′

= (20.4)

(we find it convenient to distinguish the upper, lower indices in what follows). Due
to its antisymmetry, theQ invariant does not decompose the symmetric subspaces



GroupTheory version 9.0.1, April 8, 2011

226 CHAPTER 20

(10.10), (10.11):

P1Q = 0 , P2Q =
1

2
(1 + σ)Q = 0 .

TheQ invariant can, however, decompose the antisymmetricV3 subspace (10.12)
into the new adjoint subspaceA and the remaining antisymmetric subspaceV7:

adjoint: PA= Q + bP3 , b = N/d3
1

a
= + b

antisymmetric: P7=−Q + (1− b)P3

1

a7
=− + (1− b) , (20.5)

whered3 = n(n− 1)/2 is the dimension of theSO(n) adjoint representation,b is
fixed byN = trPA, and theN is the dimension of the adjoint representation of
thefµνρδ invariance subgroup ofSO(n), to be determined.

By theprimitiveness assumption(3.39) no further invariant matrices∈ ⊗V 4 exist,
linearly independent ofQ. In particular,Q2 is not independent and is reducible to
Q andP3 by the projection operator indempotency,

0=P2
A −PA = Q2 + (2b− 1)Q+ b(b− 1)P3

0= + (2b− 1) + b(b− 1) . (20.6)

Rewriting the indempotency relation as

P2
A = (Q+ b1)PA = PA

yields the eigenvalueλA = 1− b of the matrixQ on the adjoint spaceA:

= (1− b) . (20.7)

Condition (20.6) also insures that theV → V matrix

(Q2)µν
ν′

µ =
Nd7
nd3

δν
′

ν

is proportional to unity. Were this not true, distinct eigenvalues of theQ2 matrix
would decompose the definingn-dimensional rep, contradicting the primitiveness
assumption that the defining rep is irreducible.

Now antisymmetrize fully the relation (20.6). TheP3 contribution drops out, and
the antisymmetrizedQ2 is reduced toQ by:

������������������
������������������
������������������

������������������
������������������
������������������

+ (2b− 1) = 0 . (20.8)

The invariance condition(4.35)

0 = ���
���
���

���
���
���

���
���
���
���

������������������
������������������
������������������

������������������
������������������
������������������

������ ���
���
���
��� (20.9)
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yields the second constraint on theQ2:

0 =
����
����
����

����
����
����

������������������
������������������
������������������

������������������
������������������
������������������
������

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

= ���
���
���
���

������ ���
���
���
���

���
���
���
���

���
���
���
���

������������������
������������������
������������������

������������������
������������������
������������������− 3 ���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

������������������
������������������
������������������

������������������
������������������
������������������ . (20.10)

The quadratic casimir for the defining rep and the “4-vertex"insertion are computed
by substituting the adjoint projection operatorPA,

��
��
��

��
��
��

ba
=

b

2
(n− 1)

��
��
��

��
��
��

a b
, ���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

������������������
������������������
������������������

������������������
������������������
������������������ = − b

2
. (20.11)

In this way the invariance condition (20.9)

������������������
������������������
������������������

������������������
������������������
������������������

+
b

6
(n− 4) = 0 (20.12)

fixes the value ofb = 6/(16− n). The projection operators (20.5)

adjoint: PA= Q+
6

16− n
P3 (20.13)

antisymmetric:P7=−Q+
10− n

16− n
P3 (20.14)

decompose then(n − 1)/2-dimensional adjoint spaceV3 of SO(n) into two sub-
spaces of dimensions

N = trPA =
3n(n− 1)

16− n
, d7 = trP7 =

n(n− 1)(10− n)

2(16− n)
. (20.15)

This completes the decompositionV⊗V = V1⊕V5⊕A⊕V7. From the Diophan-
tine conditions (20.15) it follows that the subspacesVA, V7 have positive integer
dimension only forn = 4, 6, 7, 8, 10. However, the reduction ofA⊗ V undertaken
next eliminates then = 6 possibility.

20.2 DEFINING ⊗ ADJOINT TENSORS

The reduction of theV⊗V space, induced by the symmetricgµν and antisymmetric
fµνσρ invariants, has led to very restrictive Diophantine conditions (20.15). Further
Diophantine conditions follow from the reduction of higherproduct spaces⊗V q. We
turn to the reduction of (adjoint)⊗ (defining)=A⊗V Kronecker product, proceeding
as in sections9.11, 10.2, 18.5, and19.2.

The three simplestA ⊗ V → A ⊗ V invariant matrices one can write down are
the identity matrix, and

R = , Q = = . (20.16)

R projects onto the defining space,A ⊗ V → V → A ⊗ V . Its characteristic
equation

R2 = =
N

n
R ,
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and the associated projection operators (3.48)

P8 =
n

N
, P9 = − n

N
, (20.17)

decomposeA⊗ V = V8 ⊕ V9, with dimensions

d8 = n , d9 = trP9 = n(N − 1) . (20.18)

The characteristic equation for

Q2 =

is computed by inserting the adjoint rep projection operator (20.13) and using the
invariance condition (20.9) and theQ eigenvalue (20.7). The result (projected onto
theV9 subspace) is a surprisingly simple quadratic equation,

0 =
(
Q2 − (1/2 + b)Q+ b/2

)
P9 = (Q− 1/2) (Q+ b)P9 , (20.19)

with roots

λ10 = −b , λ11 = 1/2 . (20.20)

Then(N − 1)-dimensional spaceV9 is now decomposed into

P9=P10 + P11

− n

aN
=

d10
10

10
+

d11
11

11
(20.21)

(the prefactors are the 3-vertex normalizations (5.8)), with the associated projection
operators (3.48)

P10=
2(16− n)

28− n

(
−Q+

1

2
1

)
P9 ,

P11=
2(16− n)

28− n

(
Q+

6

16− n
1

)
P9 . (20.22)

This completes the decompositionV ⊗ VA = V8 ⊕ V10 ⊕ V11. To compute the
dimensions ofV10, V11 subspaces, evaluate

trP9Q = −2n(2 + n)/(16− n) , (20.23)

to, finally, obtain

d10=trP10 =
3n(n+ 2)(n− 4)

28− n
,

d11=trP11 =
32n(n− 1)(n+ 2)

(16− n)(28− n)
. (20.24)

The denominators differ from those in (20.15); of the solutions to (20.15), d =
4, 7, 8, 10 are also solutions to the new Diophantine conditions. All solutions are
summarized in table20.1.

20.3 LIE ALGEBRA IDENTIFICATION

As we have shown, symmetricgµν together with antisymmetricfµνσρ invariants
cannot be realized in dimensions other thand = 4, 7, 8, 10. But can they be realized
at all? To verify that, one can turn to the tables of Lie algebras of ref. [274] and
identify these four solutions.
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Rep Dimension A1 +A1 G2 B3 D5

V =defining n 4 7 8 10

A=adjoint N = 3n(n−1)
16−n 3 14 21 45

V7=antisym. n(n−1)(10−n)
2(16−n) 3 7 7 0

V5=symmetric (n+2)(n−1)
2 9 27 35 54

V10
3n(n+2)(n−4)

28−n 0 27 48 120

V11
32n(n−1)(n+2)
(16−n)(28−n) 8 64 112 320

Table 20.1 Rep dimensions for theSO(4) family of invariance groups.

20.3.1SO(4) or A1 +A1 algebra

The first solution,d = 4, is not a surprise; it wasSO(4), Minkowski or euclidean
version, that motivated the whole project. The quartic invariant is the Levi-Civita
tensorεµνρσ. Even so, the projectors constructed are interesting. Taking

Qµ
ν
δ
ρ = gµεgδρεεσνγ , (20.25)

one can immediately calculate (20.6):

Q2 = 4P3 . (20.26)

The projectors (20.14) become

PA =
1

2
P3 +

1

4
Q, P7 =

1

2
P3 −

1

4
Q , (20.27)

and the dimensions areN = d7 = 3. Also bothPA andP7 satisfy the invariance
condition, the adjoint rep splits into two invariant subspaces. In this way, one shows
that the Lie algebra ofSO(4) is the semisimpleSU(2) + SU(2) = A1 + A1.
Furthermore, the projection operators are precisely theη, η symbols used by ’t Hooft
[164] to map the self-dual and self-antidualSO(4) antisymmetric tensors onto
SU(2) gauge group:

(PA)
µδ
νρ=

1

4

(
δµρ δ

δ
ν − gµδgνρ + εµδνρ

)
= −1

4
ηa

µ
ν ηa

δ
ρ ,

(P7)
µδ
νρ=

1

4

(
δµρ δ

δ
ν − gµδgνρ − εµδνρ

)
= −1

4
ηa

µ
ν ηa

δ
ρ . (20.28)

The only difference is that instead of using an index pairµ
ν , ’t Hooft indexes the

adjoint spaces bya = 1, 2, 3. All identities, listed in the appendix of ref. [164], now
follow from the relations of section20.1.

20.3.2 Defining rep ofG2

The 7-dimensional rep ofG2 is a subgroup ofSO(7), so it has invariantsδij and
εµνδσραβ . In addition, it has an antisymmetric cubic invariant [43, 73] fµνρ, the in-
variant that we had identified in section16.5as the multiplication table for octonions.
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Rep Dynkin index A1 + A1 G2 B3 D5

V =defining 16−n
4(n+2)

1
2

1
4

1
5

1
8

A=adjoint 1 1 1 1 1

V7=antisym. (10−n)(n−4)
4(n+2)

0 1
4

1
5

0

V5=symmetric 1
4
(16− n) 3 9

4
2 3

2

V10
7(16−n)(n−4)

4(28−n)
− 9

4
14
5

7
2

V11
8(2n+7)
(28−n)

5 8 46
5

12

Table 20.2 Dynkin indices for theSO(4) family of invariance groups.

The quartic invariant we have inadvertently rediscovered is

fµνρσ = εµνρσαβγf
αβγ . (20.29)

Furthermore, forG2 we have the identity (16.15) by which any chain of contractions
of more than twofαβγ can be reduced. Projection operators of section20.1and
section20.2yield theG2 Clebsch-Gordan series (16.12):

7⊗ 7 = 1⊕ 27⊕ 14⊕ 7 , 7⊗ 14 = 7⊕ 27⊕ 64 .

20.3.3SO(7) eight-dimensional rep

We have not attempted to identify the quartic invariant in this case. However, all the
rep dimensions (table20.1), as well as their Dynkin indices (table20.2), matchB3

reps listed in tables of Patera and Sankoff [274].

20.3.4SO(10) ten-dimensional rep

This is a trivial solution;PA = P3 andP7 = 0, so that there is no decomposition.
The quartic invariant is

fµνσρ = εµνσραβγδωξCαβ,γδ,ωξ ≡ 0 , (20.30)

whereCαβ,γδ,ωξ are theSO(10) Lie algebra structure constants.
This completes our discussion of the “bosonic” symmetricgµν , antisymmetric

eαβγδ invariant tensors. We turn next to the “fermionic” case: antisymmetricgµν ,
symmetriceαβγδ.

20.4 E7 FAMILY

We have established in chapter12 that the invariance group of antisymmetric
quadratic invariantfµν isSp(n), n even. We now add to the set ofSp(n) invariants
(12.8) a fully symmetric4-index tensor,

dµνρδ = dνµρδ = dµρνδ = dµνδρ . (20.31)
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All of the algebra of invariants and Kronecker product decomposition that follow is
the same as in section20.1, and is left as an exercise for the reader. All the dimensions
and Dynkin indices are the same, withn → −n replacement in all expressions:

PA= Q+
6

16 + n
P3 , P7 = −Q+

10 + n

16 + n
P3 , (20.32)

N =
3n(n+ 1)

16 + n
= 3n− 45 +

360

8 + 1
2n

(20.33)

d7=
n(n+ 1)(n+ 10)

2(16 + n)
.

There are seventeen solutions to this Diophantinecondition,but only ten will survive
the next one.

20.4.1 Defining⊗ adjoint tensors

Rewriting section20.2 for an antisymmetricfµν , symmetricdµνσρ is absolutely
trivial, as these tensors never make an explicit appearance. The only subtlety is that
for the reductions of Kronecker products of odd numbers of defining reps (in this
case⊗V 3), additional overall factors of−1 appear. For example, it is clear that
the dimension of the defining subspaced8 in (20.18) does not become negative;
n → −n substitution propagates only through the expressions forλA, λ7 andN .
The dimension formulas (20.24) become

d10 =
3n(n− 2)(n+ 4)

n+ 28
, d11 =

32n(n− 2)(n+ 1)

(n+ 16)(n+ 28)
. (20.34)

Out of the seventeen solutions to (20.33), ten also satisfy this Diophantine condition;
d = 2, 4, 8, 14, 20, 32, 44, 56, 164, 224.d= 44,164, and224 can be eliminated [74]
by considering reductions along the columns of the Magic Triangle and proving that
the resulting subgroups cannot be realized; consequently the groups that contain
them cannot be realized either. Only the seven solutions listed in table20.3have
antisymmetricfµν and symmetricdµνρδ invariants in the defining rep.

20.4.2 Lie algebra identification

It turns out that one does not have to work very hard to identify the series of solutions
of the preceding section.SO(2) is trivial, and there is extensive literature on the
remaining solutions. Mathematicians study them because they form the third row of
the Magic Square [130], and physicists study them becauseE7(56) → SU(3)c ×
SU(6) once was one of the favored unified models [149]. The rep dimensions and
the Dynkin indices listed in table20.3agree with the above literature, as well as
with the Lie algebra tables [274]. Here we shall explain only whyE7 is one of the
solutions.

The construction ofE7, closest to the spirit of our endeavor, has been carried out
by Brown [34, 355]. He considers ann-dimensional complex vector spaceV with
the following properties:

1. V possesses a nondegenerate skew-symmetric symplectic invariant{x, y} =
fµνx

µyν
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Rep SO(2) A1 A1 + A1 + A1 C3 A5 D6 E7

V =defining 2 4 8 14 20 32 44 56 164 224

A=adjoint 1 3 9 21 35 66 99 133 451 630

V7=symmetric 2 7 27 84 175 462 891 1463 13079 24570

V5=antisym. 0 5 27 90 189 495 945 1539 13365 24975

V10 0 6 48 216 540 1728 3696 6480 69741 134976

V11 0 2 16 64 70 + 70 352 616 912 4059 5920

Dynkin indices:

V =defining 5
2

1 5
8

1
2

2
5

5
14

1
3

5
18

10
37

A=adjoint 1 1 1 1 1 1 1 1 1

V7=symmetric 14 9 9 10 63
5

108
7

55
3

406
9

2233
37

V5=antisym. 5 6 15
2

9 12 15 18 45 60

V10
35
4

14 45
2

63
2

252
5

70 90 2205
8

380

V11
1
4

2 4 11
4
+ 11

4
38
5

9 10 107
8

14

Table 20.3 Rep dimensions and Dynkin indices for theE7 family of invariance groups.
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2. V possesses a symmetric 4-linear formq(x, y, z, w) = dµνσρx
µyνzσwρ

3. If the ternary productT(x, y, z) is defined onV by
{T(x, y, z), w} = q(x, y, z, w), then
3{T(x, x, y),T(y, y, y)} = {x, y}q(x, y, y, y)

The third property is nothing but the invariance condition (4.36) for dµνρδ as can be
verified by substitutingPA from (20.32). Hence, our quadratic, quartic invariants
fulfill all three properties assumed by Brown. He then proceeds to prove that the
56-dimensional rep ofE7 has the above properties and saves us from that labor.

TheE7 family derived above is a row of the Magic Triangle (figure1.1). This
is an extension of the Magic Square, an octonionic construction of exceptional Lie
algebras. The remaining rows are obtained [74] by applying the methods of this
monograph to various kinds of quadratic and cubic invariants, while the columns
are subgroup chains. In this context, the Diophantine condition (20.33) is one of
a family of Diophantine conditions discussed in chapter21. They all follow from
formulas for the dimension of the adjoint rep of form

N =
1

3
(k − 6)(l − 6)− 72 + 360

(
1

k
+

1

l

)
. (20.35)

(20.33) is recoveredby takingk = 24, n = 2l−16. Further Diophantine conditions,
analogous to (20.34), reduce the solutions tok, l = 8, 9, 10, 12, 15, 18, 24, 35. The
corresponding Lie algebras form the Magic Triangle (figure1.1).

20.5 DYNKIN LABELS AND YOUNG TABLEAUX FOR E7

A rep of E7 is characterized by seven Dynkin labels(a1a2a3a4a5a6a7). As in
section18.7, tracing with respect to the invariant tensordµνρδ modifies the Young
tableaux forSp(56). We leave details as an exercise for the reader. The correspon-
dence between theE7 Dynkin diagram from table7.6, Dynkin labels, irreducible
tensor Young tableaux, and the dimensions of the lowest corresponding reps is

61 2 3 4 5

7

↔ (a1a2a3a4a5a6a7) ↔ (20.36)
(

, , , , , ,

)
↔

(133, 362880, 365750, 27664, 1539, 56, 912) .

The Clebsch-Gordan series for products of the five lowest-dimensional reps ofE7

are given in table20.4.
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⊗ = + + • +

562 = 1463 + 1539 + 1 + 133

⊗ = + +

7448 = 133 · 56 = 6480 + 56 + 912

⊗ = + + +

81928 = 1463 · 56 = 24320 + 51072 + 56 + 6480

⊗ = + + + +

86184 = 1539 · 56 = 51072 + 27664 + 56 + 6480 + 912

⊗ = + + + • +

17689 = 1332 = 7371 + 8645 + 133 + 1 + 1539

⊗ = + + + +
�����
�����
�����

�����
�����
����� +

1549184 = 27664 · 56 = 980343 + 365750 + 1539 + 152152 + 40755 + 8645

Table 20.4 The Clebsch-Gordan series for Kronecker products of the five lowest-dimensional
reps ofE7.
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Chapter Twenty-One

Exceptional magic

The study of invariance algebras as pursued in chapters16–20might appear a rather
haphazard affair. Given a set of primitives, one derives a set of Diophantine equa-
tions, constructs the family of invariance algebras, and moves onto the next set of
primitives. However, a closer scrutiny of the Diophantine conditions leads to a sur-
prise: most of these equations are special cases of one and the same Diophantine
equation, and they magically arrange all exceptional families into a triangular array
I call the Magic Triangle.

21.1 MAGIC TRIANGLE

Our construction of invariance algebras has generated a series of Diophantine condi-
tions that we now summarize. The adjoint rep dimensions (19.21), (18.13), (20.33),
and (17.13) are

F4 family N = 3n− 36 +
360

n+ 10

E6 family N = 4n− 40 +
360

n+ 9

E7 family N = 3n− 45 +
360

n/2 + 8

E8 family N = 10m− 122 +
360

m
. (21.1)

There is a striking similarity between the Diophantine conditions for different fam-
ilies. If we define

F4 family m = n+ 10

E6 family m = n+ 9

E7 family m = n/2 + 8 , (21.2)
we can parametrize all the solutions of the above Diophantine conditions with a sin-
gle integerm (see table21.1). The Clebsch-Gordan series forA⊗V Kronecker prod-
ucts also show a striking similarity. The characteristic equations (17.10), (18.28),
(19.36), and (20.19) are one and the same equation:

(Q− 1)

(
Q+

6

m
1

)
Pr = 0 . (21.3)

HerePr removes the defining and⊗V 2 subspaces, and we have rescaled theE8

operatorQ (17.10) by factor 2. The role of theQ operator is only to distinguish
between the two subspaces; we are free to rescale it as we wish.
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m 8 9 10 12 15 18 24 30 36

F4 0 0 3 8 21 . 52

E6 0 0 2 8 16 35 36 78

E7 0 1 3 9 21 35 66 99 133

E8 3 8 14 28 52 78 133 190 248

Table 21.1 All defining representationn values allowed by the Diophantine conditions (21.1)
and (21.4). Them = 30 column of nonreductive algebras, not eliminated by the
Diophantine conditions of chapters16–20, is indicated by smaller script.

In the dimensions of the associated reps, the eigenvalue6/m introduces a new
Diophantine denominatorm + 6. For example, from (17.19), table18.4, (19.42),
and (20.34), the highest-dimensional rep inV ⊗ A has dimension (in terms of
parametrization (21.2)):

F4 family 3(m+ 6)2 − 156(m+ 6) + 2673− 15120

m+ 6

E6 family 4(m+ 6)2 − 188(m+ 6) + 2928− 15120

m+ 6

E7 family 2

{
6(m+ 6)2 − 246(m+ 6) + 3348− 15120

m+ 6

}

E8 family 50m2 − 1485m+ 19350 +
27 · 360

m
− 11 · 15120

m+ 6
. (21.4)

These Diophantine conditions eliminate most of the spurious solutions of (21.1);
only them = 30, 60, 90, and 120 spurious solutions survive but are in turn eliminated
by further conditions. For theE8 family, the defining rep is the adjoint rep,V ⊗
V = V ⊗ A = A ⊗ A, so the Diophantine condition (21.4) includes both1/m
and 1/(m + 6) terms. Not only can the four Diophantine conditions (21.1) be
parametrized by a single integerm; the list of solutions (table21.1) turns out to be
symmetric under the flip across the diagonal.F4 solutions are the same as those in
them = 15 column, and so on. This suggests that the rows be parametrized by an
integerℓ, in a fashion symmetric to the column parametrization bym. Indeed, the
requirement ofm ↔ ℓ symmetry leads to a unique expression that contains the four
Diophantine conditions (21.1) as special cases:

N =
(ℓ − 6)(m− 6)

3
− 72 +

360

ℓ
+

360

m
. (21.5)

We takem = 8, 9, 10, 12, 15, 18, 24, 30, and 36 as all the solutions allowed in
table21.1. By symmetry,ℓ takes the same values. All the solutions fill up theMagic
Triangle(figure21.1). Within each entry, the number in the upper left corner isN ,
the dimension of the corresponding Lie algebra, and the number in the lower left
corner isn, the dimension of the defining rep. The expressions forn for the top four
rows are guesses. The triangle is called “magic” partly because we arrived at it by
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Figure 21.1 Magic Triangle.The admissible solutions of Diophantine conditions (21.4) and
(21.5) form a triangular array that includes all of the exceptional Lie group
families derived in chapters16–20. Within each entry the number in the upper
left corner isN , the dimension of the corresponding Lie algebra, and the number
in the lower left corner isn, the dimension of the defining rep. The “Magic
Square” is framed by the double line.
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magic, and partly because it contains the Magic Square, marked by the dotted line
in figure21.1.

21.2 A BRIEF HISTORY OF EXCEPTIONAL MAGIC

To live outside the law you got to be honest.
—Bob Dylan

Literature on group theory is vast; hard work builds character and anybody who
has discovered, for example, that a trace is a useful symmetry invariant writes a
paper about it. The good thing about it is that there are many wonderful papers
to study. The bad thing about it is that hardly anybody tracksthat vast literature,
and so I soldiered on with this monograph happy and undisturbed, garnering three
citations to the Magic Triangle over the two decades. Theoryof compact Lie groups
is complete for nearly a century (Peter-Weyl theorem), and hardly anyone thinks
there is a problem there, let alone a solution to it.

In 1996 Deligne changed this by rediscovering in part the construction of ex-
ceptional Lie groups described here. In quantum field theory, analytic continuation
in space dimensionn is a given [161]. In the classical group theory of Frobenius,
Cartan, and Weyl, each group is a discrete object, with its own specific structure;
Deligne’s theory ofGLn tensor categories freed the representation theory of these
shackles, and phrased analytic continuation inn (described here in chapter9) in a
language comfortable to mathematicians. Deligne was a student of Tits; quantum
field theory has flirted with exceptional groups for at least 50 years, and so from
both directions one had to explore how continuation inn fits into the theory of
exceptional groups.

Deligne is a much admired prodigy (he joined IHES at age 19), and the exceptional
drought was followed by new contributions that this monographmakes no attempt to
incorporate. I apologize to colleagues whose important papers I have either overseen
or misunderstood. Where this monograph fits into the larger picture is explained in
chapter1. A brief history of birdtracks is given in section4.9.

There are many strands woven into the tapestry of “exceptional magic" to which
this monograph is a small contribution. First noted by Rosenfeld [298], the Magic
Square was rediscovered by Freudenthal, and made rigorous by Freudenthal and
Tits [129, 130, 326].

The construction of the exceptional Lie algebras family described here was ini-
tiated [73, 74] in 1975–77. The “Magic Triangle” and the methods used to derive
were published in the 1981 article [78] using theE7 family (chapter20) and its
SO(4)-family of “negative dimensional” cousins as an example. The derivation of
theE8 family presented in chapter17, based on the assumption of no quartic prim-
itive invariant (see figure16.1), was inspired by S. Okubo’s observation [259] that
the quartic Dynkin index (7.33) vanishes for the exceptional Lie algebras. In the
intervening years several authors have independently reached similar conclusions.

In 1986 K. Meyberg [240, 241] also showed that the absence of a primitive
quartic casimir leads to uniform decomposition of adjoint Sym2A and obtained the
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E8 family of chapter17.
E. Angelopoulos is credited for obtaining (in an unpublishedpaper written around

1987) the Cartan classification using only methods of tensorcalculus, by proving that
the quadratic casimir has only two eigenvalues on the symmetric subspace Sym2A
(the 1981 result [78] described here in section17.1). Inspired by Angelopoulos
and ref. [73], in his thesis M. El Houari applied a combination of tensorial and
diagrammatic methods to the problem of classification of simple Lie algebras and
superalgebras [111]. AsAlgebras, Groups, and Geometriesjournal does not practice
proofreading (all references are of form [?,?,?]), preciseintellectual antecedents to
this work are not easily traced. In a subsequent publicationE. Angelopoulos [12]
used the spectrum of the casimir operator acting onA⊗A to classify Lie algebras,
and,inter alia, also obtained theE8 family of chapter17 within the same class of
Lie algebras.

In a Shimane University 1989 publication, N. Kamiya [179] constructs theF4,
E6, E7, andE8 subset of theE8 family from “balanced Freudenthal-Kantor triple
systems” of dimensionsnFK = 14, 20, 32, 56. In particular, on p. 44 he states an
algebra dimension formula equivalent to (17.13) under substitutionnFK = 2(m−
8).

In a 1995 paper P. Deligne [179] attributed to P. Vogel [333] the observation
that for the five exceptional groups the antisymmetricA ∧ A and the symmetric
Sym2A adjoint rep tensor product decomposition,P +P andP• +P +P

in table17.2, can be decomposed into irreducible reps in a “uniform way,"and that
their dimensions and casimirs are rational functions of thedual Coxeter numbera,
related to the parameterm of (17.12) by

a = 1/(m− 6) . (21.6)

Herea is a = Φ(α̃, α̃), whereα̃ is the largest root of the rep, andΦ the canonical
bilinear form for the Lie algebra, in the notation of Bourbaki [29]. Deligne conjec-
tured the existence of a tensor category that models theA-module structure of⊗A.
A consequence of the conjecture would be decomposition and dimension formulas
for the irreducible modules in⊗Ak, ∨k.

This consequence was checked on computer by Deligne, Cohen,and de Man [62,
90] for all reps up to⊗A5. They note that “miraculouslyfor all these rational func-
tions both numerator and denominator factor inQ[a] as a product of linear fac-
tors.” For representations computed so far, this is an immediate consequence of the
methods used here to decompose symmetric subspaces (chapter 17). For⊗A6 the
conjecture is open.

Cohen and de Man have also observed thatD4 should be added to the list, in
agreement with our definition of theE8 family, consisting ofA1, A2, G2, D4, F4,
E6, E7, andE8. Their computations go way beyond the results of chapter17, all
of which were obtained by paper and pencil birdtrack computations performed on
trains while commuting between Gothenburg and Copenhagen.In all, Cohen and
de Man give formulas for 25 reps, seven of which are computed here.

In the context of chapter17, the dual Coxeter number (21.6) is the symmetric
space eigenvalue of the invariant tensorQ defined in (17.12). The role of the tensor
Q is to split the traceless symmetric subspace, and its overall scale is arbitrary. In
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chapter17scale was fixed in (17.4) by setting the value of the adjoint rep quadratic
casimir toCA = 1. Deligne [89] and Cohen and de Man [62] fix the scale by setting
λ +λ = 1, so their dimension formulas are stated in terms of a parameter related
to theλ used here byλCdM = 6λ . They refer to the interchange of the roots
λ ↔ λ as “involution.” Typical “translation dictionary” entries: my (17.38) is
theirA, (17.39) is theirY ∗

3 , (17.40) is theirC∗, etc.
After a prelude on “tensor categories” that puts ruminations of this monograph

into perspective, and aGL(n) warm-up in whichV ⊗V ⊗V irreducible reps pro-
jection operators and dimensions (here table9.3 of section9.11) are computed
via a birdtrack-evaluated algebra of invariants multiplication table (3.42) (see sec-
tion 9.11.1), in the 1999 paper [63] A. M. Cohen and R. de Man perform birdtrack
computations of section17.1, and arrive at the same projection operators and dimen-
sion formulas. While they diagonalize the full 5×5 algebra of invariants multipli-
cation table, in this monograph the reduction proceeds in two steps, first toSO(n)
irreducible reps, which in turn are decomposed intoE8 family irreducible reps. This
facilitates by-hand computations, but the primitiveness condition (17.10) is more
elegantly stated by Cohen and de Man prior to reductions, here (17.9). They also
fail to find an algorithm for reducingE8 family vacuum bubbles whose loops are of
length 6 or longer, and speculate that expansion in terms of tree diagrams will not
suffice, and a new symmetric 6-index primitive invariant will have to be included
in the decomposition of⊗A6. However, on the way to decomposing the⊗A3 space
(section17.2) I do eliminate the 6-loop diagram,i.e., replace

by shorter loops (double line refers toV from (17.15) — details are a bit tedious for
this overview). This should imply a 6-loop reduction formula analogous to (17.9),
that I have not tried to extract. In the same spirit, according to table7.1of orders of
independent casimirs [30, 289, 134, 54, 295] (the Betti numbers) for theE8 family
the next nonvanishing Dynkin index (beyond the quadratic one) corresponds to a
loop of length 8.

Cohen and de Man acknowledge in passing that diagrammatic notation “is well
known to physicists (cf. Cvitanović [83]),” though I have to admit that the converse
is less so: the invariant tensors basis of section3.3.1is “the ringEndC(X), a free
Z[t]-module,” birdtracks morph to “morphisms,” and so on. Todayno one has leisure
for reading source papers in foreign tongues, so Cohen and deMan verify theE8

family projection operators and dimension formulas of chapter17 by the birdtrack
computations identical to those already given in ref. [83].

Inspired by conjectures of Deligne, J. M. Landsberg and L. Manivel [203, 204,
205, 206, 210] utilize projective geometry and the triality model of Allison [9] to in-
terpret the Magic Square, recover the known dimension and decomposition formulas
of Deligne and Vogel, and derive an infinity of higher-dimensional rep formulas, all
proved without recourse to computers. They arrive at some ofthe formulas derived
here, including [209] them = 30 column of nonreductive algebras in table17.1.
They deduce the formula (21.5) conjectured above from Vogel’s [334] “universal
Lie algebra” dimension formula (proposition 3.2 of ref. [205]), and interpretm, ℓ
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asm = 3(a+ 4), ℓ = 3(b + 4), wherea, b = 0, 1, 2, 4, 6, 8 are the dimensions of
the algebras used in their construction (in casea or b 6= 6 these are composition
algebras). Form ≥ 12 this agrees with the Magic Square.

In 2002 Deligne and Gross [92] defined the Lie groups (i.e., specified the isogeny
class) whose Lie algebras were previously known to fit into the Magic Triangle
of figure 21.1. B. H. Gross credits his student K. E. Rumelhart [302, 91] with
introducing the Magic Triangle in the 1996 Ph.D. thesis. Also in 2002, an intriguing
link between theq-state Potts models and theE8 family was discovered by Dorey
et al. [96]. For a related recent study ofE6 andE7 families, see MacKay and
Taylor [226].

So much for group theory from my myopic, birdtracks perspective: Are there any
physical applications of exceptional magic?

21.3 EXTENDED SUPERGRAVITIES AND THE MAGIC TRIANGLE

In chapter20I showed that the extension of Minkowski space into negativedimen-
sions yields theE7 family. Thesen → −n relations and the Magic Triangle arose
as by-products of an investigation of group-theoretic structure of gauge theories
undertaken in ref. [73], written up in more detail in the 1977 Oxford preprint [74].
I obtained an exhaustive classification, but are there any realizations of it? Surpris-
ingly, every entry in our classification appears to be realized as a global symmetry
of an extended supergravity.

In 1979 Cremmer and Julia [68] discovered that inN = 8 (or N = 7) super-
gravity’s 28 vectors, together with their 28 duals, form a 56multiplet of a global
E7 symmetry. This is a global symmetry analogous toSO(2) duality rotations of
the doublet(Fµν , F∗µν) in jµ = 0 sourceless electrodynamics. The appearance of
E7 was quite unexpected; it was the first time an exceptional Liegroup emerged
as a physical symmetry, without having been inserted into a model by hand. While
the classification I have obtained here does not explain why this happens, it sug-
gests that there is a deep connection between the extended supergravities and the
exceptional Lie algebras. Cremmer and Julia’sN = 7, 6, 5 global symmetry groups
E7, SO(12), SU(6) are included in the present classification. Furthermore, vectors
plus their duals form multiplets of dimension 56, 32, 20, so they belong to the defin-
ing reps in our classification. While forN ≤ 4 extended supergravities, the numbers
of vectors do not match the dimensions of the defining reps, Paul Howe has pointed
out that with one additional vector multipletN = 1, 2, . . . , 7 extended supergravi-
ties exhaust the present classification. These observations are summarized in table
5 of ref. [78].

In 1980 B. Julia introduced a different Magic Triangle [174, 175, 176, 160] un-
related to the one described here. His work was stimulated bya 1979 Gibbons and
Hawking remark on gravitational instantons and Ehlers symmetry, and the vague
but provocative remarks of Morel and Thierry-Mieg. The two triangles differ: Ju-
lia’s “disintegration (i.e. oxidation) forEn cosets” triangle is based on real forms
that match up only with the [3×3] subsquare of the Rosenfeld-Freudenthal Magic
Square. I still do not know whether there is any relation between extended super-
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gravities and the construction presented here.

EPILOGUE

Quantum Field Theory relies heavily on the theory of Lie groups, and so I went
step-by-step through the proof of the Cartan-Killing classification. Frankly, I did
not like it. The proofs were beautiful, but Cartan-Weyl explicit Lie algebra matrices
were inconvenientand unintuitive for Feynmann diagram computations. There must
be more to symmetries observed in nature than a set of Diophantine conditions on
Cartan lattices. So I junked the whole thing, and restarted in the 19th century,
looking for conditions on Lie groups that would preserve invariant quantities other
than length and volume. Imagine the pleasure of rediscovering all exceptional Lie
algebras, arranged in a single family, in the very first step of the construction, as
invariance groups that preserve an antisymmetric cubic invariant (figure16.1)!

Monotheistic cults seek a single answer to all questions, and to a religious temper-
amentE8 is the great temptress. My own excursion into invariances beyond length
and volume yielded no physical insights. Nature is too rich to follow a single tune;
why should it care that all we know today is a bit of differential geometry? It presents
us with so many questions more fundamental and pressing thanwhetherE8 is the
mother or the graveyard of theories, so my journey into exceptional magic stops
here.

Almost anybody whose research requires sustained use of group theory (and it
is hard to think of a physical or mathematical problem that iswholly devoid of
symmetry) writes a book about it. They, in their amazing variety of tastes, flavors,
and ethnicities fill stacks in science libraries. My excuse for yet another text is that
this book is like no other group-theory textbook. It’s written in birdtracks. It’s self-
contained. Every calculation in the book is a pencil-and-paper exercise, with a rare
resort to a pocket calculator. And, of course, it too is unfinished: it is up to you, dear
reader, to complete it. I fearE8 will not yield to pencil and paper.
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Appendix A

Recursive decomposition

This appendix deals with the practicalities of computing projection operator eigen-
values, and is best skipped unless you need to carry out such acalculation.

Let P stand for a projection onto a subspace or the entire space (inwhich case
P = 1). Assume that the subspace has already been reduced intom irreducible
subspaces and a remainder

P =

m∑

γ=1

Pγ +Pr . (A.1)

Now adjoin a new invariant matrixQ to the set of invariants. By assumption,
Q does not reduce further theγ = 1, 2, . . . ,m subspaces,i.e., has eigenvalues
λ1, λ2, . . . , λm:

QPγ = λγPγ (no sum), (A.2)

on theγth subspace. We construct an invariant, matrixQ̂, restricted to the remaining
(as yet not decomposed) subspace by

Q̂ := PrQPr = PQP−
m∑

γ=1

λγPγ . (A.3)

AsPr projects onto a finite-dimensional subspace,Q̂ satisfies aminimalcharacter-
istic equation of ordern ≥ 2:

n∑

k=0

akQ̂
k =

m+n∏

α=m+1

(Q̂− λαPr) = 0 , (A.4)

with the corresponding projection operators (3.48):

Pα =
∏

β 6=α

Q̂− λβ

λα − λβ
Pr , α = {m+ 1, . . . ,m+ n} . (A.5)

“Minimal” in the above means that we drop repeated roots, so all eigenvalues are
distinct.Q̂ is an awkward object in computations, so we reexpress the projection
operator, in terms ofQ, as follows.

Define first the polynomial, obtained by deleting the(Q̂−λα1) factor from (A.4)

∏

β 6=α

(x− λβ) =

n−1∑

k=0

bkx
k , α, β = m+ 1, . . .m+ n , (A.6)
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where the expansion coefficientbk = b
(α)
k depends on the choice of the subspace

α. SubstitutingPr = P −∑m
α=1 Pα and using the orthogonality ofPα, we obtain

an alternative formula for the projection operators

Pα =
1∑
bkλk

α

n−1∑

k=0

bk

{
(PQ)k −

m∑

γ=1

λk
αPγ

}
P , (A.7)

and dimensions

dα = trPα =
1∑
bkλk

α

n−1∑

k=0

bk

{
tr(PQ)k −

m∑

γ=1

λk
γdγ

}
. (A.8)

The utility of this formula lies in the fact that once the polynomial (A.6) is given, the
only new data it requires are the tracestr(PQ)k, and those are simpler to evaluate
thantr Q̂k.
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Appendix B

Properties of Young projections

H. Elvang and P. Cvitanović

In this appendix we prove the properties of the Young projection operators, stated
in section9.4.

B.1 UNIQUENESS OF YOUNG PROJECTION OPERATORS

We now show that the Young projection operatorPY is well defined by proving
the existence and uniqueness (up to an overall sign) of a nonvanishing connection
between the symmetrizers and antisymmetrizers inPY.

The proof is by induction over the number of columnst in the Young diagramY
— the principle is illustrated in figureB.1 For t = 1 the Young projection operator
consists of one antisymmetrizer of lengths, ands symmetrizers of length 1. Clearly
the connection can only be made in one way, up to an overall sign.

Y

on
e!

Y’Y

co
nn

ec
tio

n

Figure B.1 There is a unique (up to an overall sign) connection between the symmetrizers
and the antisymmetrizers, so the Young projection operators are well defined by
the construction procedure explained in the text. The figureshows the principle
of the proof. The dots on the middle Young diagram mark boxes that correspond
to contracted lines.

Assume the result to be valid for Young projection operatorsderived from Young
diagrams witht − 1 columns. Let Y be a Young diagram witht columns. The
lines from A1 in PY must connect to different symmetrizers for the connection
to be nonzero. There are exactly|A1| symmetrizers inPY, so this can be done in
essentially one way; which line goes to which symmetrizer isonly a matter of an
overall sign, and where a line enters a symmetrizer is irrelevant due to (6.8).

After having connected A1, connecting the symmetry operators in the rest of
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PY is the problem of connecting symmetrizers to antisymmetrizers in the Young
projection operatorPY′ , whereY′ is the Young diagram obtained from Y by slicing
off the first column. Thus,Y′ hask−1 columns, so by the induction hypothesis, the
rest of the symmetry operators inPY can be connected in exactly one nonvanishing
way (up to sign).

By construction, the identity is always present in the expansion. The overall sign
of the Young projection operator is fixed by requiring that upon expansion of the
symmetry operators, the identity has a positive coefficient.

B.2 ORTHOGONALITY

If Ya andYb denote standard tableaux derived from the same Young diagram Y,
thenPYa

PYb
= PYb

PYa
= δabP

2
Ya

, since there is a nontrivial permutation of the
lines connecting the symmetry operators ofYa with those ofYb, and by uniqueness
of the nonzero connection the result is eitherP2

Ya
(if Ya = Yb) or 0 (if Ya 6= Yb).

Next, consider two different Young diagrams Y and Z with the same number of
boxes. Since at least one column must be bigger in (say) Y thanin Z and thep lines
from the corresponding antisymmetrizer must connect to different symmetrizers, it
is not possible to make a nonzero connection between the antisymmetrizers ofPYa

to the symmetrizers inPZb
, where subscriptsa andb denote any standard tableaux

of Y and Z. HencePYa
PZb

= 0, and by a similar argument,PZb
PYa

= 0.

B.3 NORMALIZATION AND COMPLETENESS

We now derive the formula for the normalization factorαY such that the Young
projection operators are idempotent,P2

Ya
= PYa

. By the normalization of the
symmetry operators, Young projection operators corresponding to fully symmetrical
or antisymmetrical Young tableaux will be idempotent withαY = 1.

Diagrammatically,P2
Ya

is PYa
connected toPYa

, hence it may be viewed as a
set ofouter symmetry operators connected by a set ofinner symmetry operators.
Expanding all the inner symmetry operators and using the uniqueness of the nonzero
connection between the symmetrizers and antisymmetrizersof the Young projection
operators, we find that each term in the expansion is either 0 or a copy ofPYa

. For a
Young diagram withs rows andt columns there will be a factor of1/|Si|! (1/|Aj|!)
from the expansion of each inner (anti)symmetrizer, so we find

P2
Ya

=α2
Ya

=
α2
Ya∏s

i=1 |Si|!
∏t

j=1 |Aj |!
∑

σ

σ

=αYa

κY∏s
i=1 |Si|!

∏t
j=1 |Aj |!

PYa
,

where the sum is over permutationsσ from the expansion of the inner symmetry
operators. Note that by the uniqueness of the connection between the symmetrizers
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and antisymmetrizers, the constantκY is independent of which tableau gives rise
to the projection, and consequently the normalization constantαY depends only on
the Young diagram and not the tableau.

For a givenk, consider the Young projection operatorsPYa
corresponding to all

thek-box Young tableaux. Since the operatorsPYa
are orthogonal and in 1-1 corre-

spondence with the Young tableaux, it follows from the discussion in section9.3.2
that there are no other operators ofk lines orthogonal to this set. Hence thePYa

’s
form a complete set, so that

1 =
∑

Ya

PYa
. (B.1)

Expanding the projections the identity appears only once, so we have

PYa
= αY

1∏s
i=1 |Si|!

∏t
j=1 |Aj |!




...p
+ . . .


 ,

and using this, equation (B.1) states

...p
=

(
k!
∑

Y

αY/|Y|∏s
i=1 |Si|!

∏t
j=1 |Aj |!

)

...p
, (B.2)

since all permutations different from the identity must cancel. When changing the
sum from a sum over the tableaux to a sum over the Young diagrams, we use the
fact that thatαY depends only on the diagram and that there are∆Y = k!/|Y |
k-standard tableaux for a given diagram. Choosing

αY =

∏s
i=1 |Si|!

∏t
j=1 |Aj |!

|Y| , (B.3)

the factor on the right-hand side of (B.2) is 1 by (9.19).
Since the choice of normalization (B.3) gives the completeness relation (B.1), it

follows that it also gives idempotent operators: multiplying byPZb
on both sides of

(B.1) and using orthogonality, we findPZb
= P2

Zb
for any Young tableauZb.

B.4 DIMENSION FORMULA

Here we derive the dimension formula (9.28) of theU(n) irreps recursively from
the Young projection operators.

Let Y be a standard tableau andY′ the Young diagram obtained from Y by removal
of the right-most box in the last row. Note thatY′ is a standard tableau. Next, draw
the Young projection operator corresponding toY andY′ and note thatPY with the
last line traced is proportional toPY′ .

Quite generally, this contraction will look like

YRest of P

...

. (B.4)
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Using (6.10) and (6.19), we have

ts =
1

s


s-1 t + (s− 1) s-1 t




=
(n− t+ 1)

st s-1 t-1
+

(s− 1)

st
s-1 t-1

− (s− 1)(t− 1)

st
t-1s-1

=
n− t+ s

st s-1 t-1

− (s− 1)(t− 1)

st
t-1s-1 .

Inserting this into (B.4) we see that the first term is proportional to the projection
operatorPY′ . The second term vanishes:

s-1 S* A*

Rest of PY

t-1

= 0 .

The lines entering S∗ from the right come from antisymmetrizers in the rest of
thePY-diagram. One of these lines, from Aa, say, must pass from S∗ through the
lower loop to A∗ and from A∗ connect to one of the symmetrizers, say Ss in the
rest of thePY-diagram. But due to the construction of the connection between
symmetrizers and antisymmetrizers in a Young projection operator, there is already
a line connecting Ss to Aa. Hence the diagram vanishes.

The dimensionality formula follows by induction on the number of boxes in the
Young diagrams, with the dimension of a single box Young diagram beingn. Let
Y be a Young diagram withp boxes. We assume that the dimensionality formula
is valid for any Young diagram withp − 1 boxes. WithPY′ obtained fromPY as
above, we have (using the above calculation and writingDY for the diagrammatic
part ofPY):

dimPY=αY tr DY =
n− t+ s

st
αY tr DY′ (B.5)

=(n− t+ s)αY′

|Y′|
|Y| trDY′ (B.6)

=(n− t+ s)
fY′

|Y| =
fY
|Y| . (B.7)

This completes the proof of the dimensionality formula (9.28).
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